Часто задаваемые вопросы

 

    ЧАСТО ЗАДАВАЕМЫЕ ВОПРОСЫ

https://faq-ru.ru             

 

Как выбрать дефектоскоп


Дефектоскоп. Виды и работа.Применение и как выбрать. Особенности

Дефектоскоп – это электронное устройство, предназначенное для обнаружения скрытых дефектов в твердых изделиях. Прибор позволяет диагностировать отклонения от нормы без создания нагрузки или разрушения изучаемого объекта. С его помощью можно оценить однородность структуры изделия, наличие на его поверхности послаблений в результате коррозии, отклонения химического состава или наличие микротрещин.

Где используется дефектоскоп

Дефектоскопы используются в машиностроении и строительстве. С их помощью проверяются различные узлы и агрегаты, а также заготовки. Эти приборы являются незаменимыми в нефтегазовой промышленности и энергетике. С их помощью проверяются трубы и цистерны на наличие слабых стенок. Данное оборудование позволяет выявлять брак, что исключает его применение на строительстве ответственных объектов. С помощью дефектоскопов можно контролировать надежность сварных швов, слоя клея или плотность пайки.

Это оборудование производится в переносном и стационарном варианте. Отдельные модели позволяют ввести сканирование даже тех объектов, которые двигаются на высокой скорости. Такие приборы применяются для проверки труб, которые протягиваются через область сканирования. Также существуют большие дефектоскопы, передвигаемые на вагонетке по рельсам. Эти приборы используются в строительстве и промышленном производстве, в частности самолетов и кораблей. Существует масса видов дефектоскопов адаптированных под определенные условия эксплуатации. В металоперерабатывающей промышленности применяются устройства, которые могут выявлять дефекты в разогретых металлических заготовках.

Конструкции дефектоскопов

Для обеспечения работы дефектоскопа используются различные физические явления, природа которых существенно отличаются друг от друга. В связи с этим существует масса конструктивных особенностей этих приборов.

Среди самых распространенных дефектоскопов, которые массово производятся, можно выделить:
  • Акустические.
  • Магнитопорошковые.
  • Вихретоковые.
  • Феррозондовые.
  • Электроискровые.
  • Термоэлектрические.
  • Радиационные.
  • Инфракрасные.
  • Радиоволновые.
  • Электронно-оптические.
  • Капиллярные.

Каждый из этих типов оборудования обладает своими сильными сторонами и слабостями. В связи с этим они могут подходить идеально для одних целей, но быть непригодными для других. Чтобы сделать правильный выбор дефектоскопа, важно предварительно разобраться с принципом действия каждой разновидности.

Акустический дефектоскоп

Также называется импульсным или ультразвуковым. Он работает по принципу эха. На изделие, которое тестируется, направляется короткий ультразвуковой импульс, после чего его колебания регистрируются. В результате на экран выводится карта дефектов. Этот прибор является одним из самых востребованных. Он дает вполне четкую картину тех дефектов, которые скрыты на поверхности. К достоинствам подобного оборудования можно отнести то, что оно работает с разными материалами. Существует масса подвидов акустических дефектоскопов, которые также работают от ультразвуковой волны.

Магнитопорошковый дефектоскоп

Применяется для контроля деталей различных форм. С его помощью можно сканировать сварные швы и углубления, получаемые при сверлении. Важный недостаток метода заключается в том, что он позволяет проверять только поверхностные отклонения. Он не сможет определить внутренние проблемы, если они не имеют внешнего выхода. Для обеспечения сканирования деталей применяется специальный порошок, который рассредоточивается по поверхности объекта и заполняет имеющиеся в нем неровности и трещины. После этого проводится сканирование магнитного поля, что позволяет находить место наибольшего скопления порошка. Это позволяет создавать карту дефектов, поскольку порошок не задерживается на нормальных гладких поверхностях, а забивается в неровности

Недостаток данного метода заключается в том, что для него необходимо покупать магнитный порошок. Он является расходным материалом, поэтому быстро заканчивается и высыпает в роли грязи, которую нужно периодически собирать.

Вихретоковые дефектоскопы

Действуют по физическому принципу вихревых токов. Данный аппарат возбуждает вихревые токи в зоне тестирования, после чего анализирует состояние объекта по их поведению. Данный метод является одним из самых неточных. Глубина контроля трещины составляет до 2 мм. В связи с этим получить объективную картину действительного состояние измеряемой поверхности сложно.

Феррозондовый дефектоскоп

Вырабатывает импульсы тока, которые посылаются на изучаемую поверхность. По их поведению происходит анализ имеющихся дефектов. Данное оборудование является довольно чувствительным и может выявлять неровности с глубиной от 0,1 мм. Данным оборудованием осуществляется контроль качества литых деталей, металлопроката и сварочных соединений.

Электроискровые дефектоскопы

Создают электрический разряд между своим чувствительным щупом и изучаемой поверхностью. Щуп представляет собой пучок электродов, что увеличивает площадь изучения. Разряды пробиваются через воздушный промежуток между поверхностями. В результате осуществляется создание карты изучаемого объекта с отмеченными повреждениями. Для обследования таким методом необходимо чтобы объект изучения был изготовлен из токопроводящего материала.

Термоэлектрический дефектоскоп

Работает по физическому принципу электродвижущей силы, которая возникает при нагреве участка контакта между двумя различными материалами. Данное оборудование является одним из самых дорогостоящих, поскольку требует использование высококачественных материалов, которые позволяют фиксировать минимальные изменения температуры между эталоном и изучаемой поверхностью.

Радиационные

Осуществляют облучение объектов рентгеновскими лучами и нейтронами. Они работают по такому же принципу что и применяемый в медицине рентген аппарат. В результате получается радиографический снимок или светлое изображение на экране прибора. Данное оборудование является небезопасным для оператора, поскольку рентгеновские лучи неблагоприятно влияют на здоровье. Прибор позволяет проводить действительно глубокое изучение объектов, но может применяться далеко не на всех материалах.

Инфракрасные

Отправляют тепловые лучи, которые отбиваются от поверхности объекта и позволяют анализировать отклонение от нормы. На экране прибора просматривается тепловая карта, где участки с дефектами имеют измененные цвета. Данное оборудование позволяет выявлять дефекты, но не дает точной картины об их характеристиках. Тяжело определиться с глубиной трещин, поскольку рассматриваются только очертания нарушенных участков.

Радиоволновые

Генерируют радиоволны, которые направляются на предмет изучения. Потому как они отбиваются от предмета, можно определить не только трещины или утолщение, но и диаметр и даже толщину изоляционного покрытия. Подобное оборудование применяется для работы с металлами и другими материалами.

Электронно-оптические

Применяются для контроля объектов, которые находятся под высоким напряжением. Ими пользуются электромонтажники. Подобное оборудование позволяет не только выявить места перелома проводов, но и качество работы изоляции.

Капиллярное дефектоскопирование

Подразумевают покрытие изучаемой поверхности специальным индикаторным веществом, которое заполняет имеющиеся микротрещины. В тех местах, где толщина вещества больше, его цвет более насыщенный в сравнении с ровными участками. По этим цветам визуально определяются углубления. Этот метод подразумевает использование не электронного прибора, а только индикаторное вещество и лупу или микроскоп.

Критерии выбора

Выбирая дефектоскоп, следует обратить внимание на некоторые характеристики, которые являются ключевыми. В первую очередь нужно ориентироваться по диапазону измерения. Разные модели отличается чувствительностью. Самое точное устройство способно выявлять дефект, глубина которого составляет всего 1 мкм. Для определенных целей такая чувствительность действительно нужна, но для прочих является излишней. К примеру, если необходимо найти микротрещины на коленвале или других вращающихся деталях, то лучше использовать точное оборудование. Если же нужно проанализировать состояние металлического каркаса в строительстве, то подобные микротрещины не столь важны. Учитывая толщину тела арматуры или балок, маленький дефект глубиной 1 мкм никак не сможет стать причиной того, что металл лопнет, особенно если он используется в тех целях, для которых предназначен.

Также выбирая дефектоскоп, следует ориентироваться по тому, для каких материалов оно предназначено. Одни модели могут работать только с металлами, в то время как другие являются универсальными. Также по отношению к дефектоскопам важным понятием является производительность. Она показывает скорость сканирования. Чем она выше, тем быстрее можно оценить состояние объекта. Если ориентироваться по данному показателю, то безусловными лидерами являются вихретоковое и феррозондовое оборудование. Если использовать магнитопорошковый прибор, то продолжительность диагностики займет много времени, к тому же возникнет необходимость растирать порошок.

Рассматривая дефектоскопы, стоит в первую очередь отдать предпочтения ультразвуковым приборам. Они не несут вреда для оператора как радиационные, при этом дают вполне достаточное представление об имеющихся дефектах и целесообразности отправки детали в выбраковку.

Похожие темы:

tehpribory.ru

как работают разные типы приборов и где их применяют

Контроль качества производства и строительства должен осуществляться на каждом этапе. Иногда проверить работу объекта нужно уже в процессе эксплуатации. Прибор, который помогает проводить подобного рода экспертизу неразрушающим методом, называется дефектоскоп. Видов дефектоскопов существует огромное множество. Отличаются они по принципу работы и назначению. Изучите самые популярные методы дефектоскопии и полезные рекомендации по выбору устройства, чтобы не ошибиться при выборе и быстро освоить работу.

Содержание

В зависимости от цели дефектоскопии и области его применения, кардинально меняется методика выявления повреждений и брака, на которой основывается работа того или иного дефектоскопа.

Прибор вихретокового типа

Зачем нужна дефектоскопия ↑

Дефектоскопия – мероприятия, которые направлены на выявление всевозможных отклонений от проекта и нормативов во время производства или эксплуатации объекта. Дефектоскопия помогает обнаружить неисправность задолго до того, как она даст о себе знать. Таким образом, можно предотвратить поломки механизмов, разрушение конструкций и аварии на производстве.

Дефектоскоп – прибор, предназначенный для проверки и выявления дефектов на поверхности или в теле всевозможных изделий. Дефекты могут быть самыми разнообразными. Одни приборы нужны для обнаружения следов коррозии, другие – для поиска полостей, утончения, несоответствия размеров и прочих физико-механических изъянов, а третьи могут определить дефекты на уровне молекулярного строения – найти изменения структуры тела, его химического состава.

Дефектоскоп с электронным дисплеем

В каких отраслях применяется дефектоскопия ↑

Дефектоскоп относят к классу приборов под общим названием «средства неразрушающего контроля». В процессе производства изделия часто поддаются всевозможным проверкам. Некоторые детали подвергают испытаниям в лабораториях, где определяют их запас прочности, способность противостоять всевозможным нагрузкам и воздействиям. Недостаток такой методики в том, что она проводится выборочно и не гарантирует 100% качество всей продукции.

Диагностика трубопровода

Неразрушающий контроль, к которому относят и проверку дефектоскопом, позволяет оценить состояние конкретного изделия или элемента конструкции на месте и без проведения испытаний. Инструмент незаменим в таких отраслях:

  • строительство;
  • машиностроение;
  • производство металлопроката;
  • энергетика;
  • научно-исследовательские работы;
  • химия;
  • горная промышленность.

Неразрушающий контроль в авиастроении

Дефектоскопом проверяют качество соединения (особенно важно это для сварки трубопроводов высокого давления), состояние конструкции в строительстве (металлической, железобетонной), степень износа механизма, наличие повреждения детали. Практически во всех отраслях промышленности, где важно контролировать состояние и соответствие нормам твердых элементов, применяют разные дефектоскопы.

Классификация дефектоскопов по методу проверки ↑

В зависимости от метода проверки, выделяют такие типы дефектоскопов:

  • акустические;
  • вихретоковые;
  • электролитические;
  • искровые;
  • магнитно-порошковые;
  • рентгеновские аппараты;
  • капиллярный;
  • импедансный и другие.

Панель управления УЗ дефектоскопа

Сравнивать их сложно, они настолько разные по строению, работе и даже внешнему виду, что объединяет их только назначение. Выделить какой-то из приборов и уверенно сказать, что он лучший, универсальный и заменит все остальные невозможно. Поэтому при выборе важно не принимать опрометчивых решений и не покупать первую попавшуюся модель.

Самые популярные дефектоскопы, которыми можно проводить экспертизу неразрушающим методом: ультразвуковой (акустический), магнитный и вихретоковый. Они компактны, мобильны и просты в эксплуатации и понимании принципа. Другие используются не так широко, но каждый прочно занимает свою нишу среди других средств дефектоскопии.

Виды дефектоскопии

Акустический – работа ультразвука ↑

Акустический дефектоскоп – понятие, объединяющее в себе схожие по общему принципу приборы неразрушающего контроля. Основывается акустическая дефектоскопия на свойствах звуковой волны. Из школьного курса физики известно, что основные параметры волны не изменяются при движении в однородной среде. Однако, если на пути волны возникает новая среда, частота и длина ее изменяются.

Чем выше частота звука, тем точнее результат, поэтому из всего диапазона применяют ультразвуковые волны. Ультразвуковой дефектоскоп излучает звуковые волны, которые проходят сквозь проверяемый объект. Если присутствуют полости, вкрапления других материалов или прочие дефекты, ультразвуковая волна обязательно укажет на них изменением параметров.

Все результаты должны заноситься в журнал

Ультразвуковые дефектоскопы, работающие по принципу эхо-метода, являются наиболее распространенными и доступными. УЗ-волна проникает в объект, если дефектов не обнаружено, отражения не происходит, соответственно, прибор ничего не улавливает и не регистрирует. Если же возникло отражение УЗ, это указывает на наличие изъяна. Генератор ультразвука является так же и приемником, что очень удобно и облегчает проведение дефектоскопии.

Мини-модель ультразвукового типа

Зеркальный метод похож на эхо, но используется два устройства – приемник и передатчик. Преимущество такого метода в том, что оба устройства находятся по одну сторону от объекта, что облегчает процесс установки, настройки и произведения замеров.

Отдельно выделяют методы анализа ультразвука, который прошел через объект насквозь. Используют понятие «звуковая тень». Если внутри объекта присутствует дефект, он способствует резкому затуханию колебаний, то есть, создает тень. На этом принципе основывается теневой метод ультразвуковой дефектоскопии, когда генератор и приемник колебаний располагаются на одной акустической оси с разных сторон.

Проверка ультразвуком

Недостатки такого прибора в том, что предъявляются строгие требования к размерам, конфигурации и даже степени шероховатости поверхности проверяемого элемента, что делает устройство не совсем универсальным.

Вихретоковый – магнитные поля и вихревые токи ↑

Французский физик Жан Фуко посвятил не один год изучению вихревых токов (токов Фуко), которые возникают в проводниках при создании в непосредственной близости к ним переменного магнитного поля. Основываясь на том, что при наличии в теле дефекта, эти самые вихревые токи создают свое – вторичное магнитное поле, осуществляют дефектоскопию вихретоковые устройства.

Вихретоковый дефектоскоп создает исходное переменное магнитное поле, а вот вторичное поле, которое и дает возможность выявить и проанализировать недостаток в объекте, возникает в результате электромагнитной индукции. Дефектоскоп улавливает вторичное поле, регистрирует его параметры и делает вывод о виде и качестве дефекта.

Производительность этого прибора высокая, проверка осуществляется довольно быстро. Однако вихревые токи могут возникать исключительно в тех материалах, которые являются проводниками, поэтому область применения такого девайса значительно уже его аналогов.

Устройство вызывает в материале вихревые токи

Магнитнопорошковый – наглядная картина ↑

Еще один распространенный метод дефектоскопии – магнитно-порошковый. Он применяется для оценки сварных соединений, качества защитного слоя, надежности трубопроводов и так далее. Особо ценят это метод для проверки сложных по форме элементов и труднодоступных для других приборов участков.

Принцип работы магнитного дефектоскопа основан на физических свойствах ферромагнитных материалов. Они имеют способность намагничиваться. При помощи постоянных магнитов или специальных устройств, которые могут создавать продольное или циркулярное магнитное поле.

После воздействия на участок объекта магнитом, на него сухим или мокрым способом наносят так называемый реагент – магнитный порошок. Под действием магнитного поля, которое возникло в результате намагничивания, порошок соединяется в цепочки, структурируется и образует на поверхности четкий рисунок в виде изогнутых линий.

Намагничивание специальным прибором

Этот рисунок наглядно демонстрирует работу магнитного поля. Зная его особенности и основные параметры, при помощи магнитного дефектоскопа можно определить, в каком месте располагается дефект. Как правило, непосредственно над изъяном (трещиной или полостью) наблюдается ярко выраженное скопление порошка. Для определения характеристик дефекта, полученную картинку сверяют с эталоном.

Магнитный порошок в спрее

Остальные виды и их принцип действия ↑

Методы дефектоскопии совершенствуются с каждым годом. Появляются новые методики, другие постепенно изживают себя. Многие дефектоскопы имеют довольно узкоспециализированное назначение и применяются только в определенных отраслях промышленности.

Принцип работы феррозондового дефектоскопа основывается на оценке импульсов, возникающих при движении устройства вдоль объекта. Применяется в металлургии, при производстве металлопроката и диагностики сварных соединений.

Радиационный дефектоскоп облучает объект рентгеновскими лучами, альфа-, бета-, гамма-излучением или нейтронами. В результате получают подробный снимок элемента со всеми присутствующими дефектами и неоднородностями. Метод дорогой, но очень информативный.

Капиллярный дефектоскоп выявляет поверхностные трещины и несплошности в результате воздействия на объект специальным проявляющим веществом. Оценка результата производится визуальным методом. Применяется капиллярная дефектоскопия по большей части в машиностроении, авиации, судостроении.

В энергетике для анализа работы и выявления несовершенства элементов, находящихся под высоким напряжением, применяют электронно-оптический дефектоскоп. Он способен уловить малейшие изменения коронных и поверхностно-частичных разрядов, что дает возможность оценить работу оборудования без его остановки – дистанционно.

Снимки радиационной дефектоскопии

Основные параметры, на которые следует обратить внимание при выборе дефектоскопа любого типа:

  • диапазон;
  • назначение;
  • производительность;
  • сложность монтажа;
  • диапазон температур;
  • надежность.

Магнитопорошковый прибор МД-М

Разные модели отличаются по диапазону измерения. Это значит, что одни способны выявить дефекты в 1 мкм, а предел для других – 10 мм, например. Если в машиностроении микротрещины в детали играют существенную роль, то для дефектоскопии в строительстве нет смысла покупать сверхточный прибор.

Также производитель обязательно указывает, для каких материалов предназначен конкретный дефектоскоп, недочеты какого характера он должен выявлять. Могут предъявляться требования к характеру поверхности элемента, наличию защитного слоя, размерам и форме объекта.

Под параметром «производительность» подразумевается скорость сканирования и объем работы, который можно выполнить за единицу времени при помощи определенного дефектоскопа. Так, вихретоковый и феррозондовый способы обеспечивают высокую скорость, в то время как процесс намагничивания и обработки каждого отдельного участка магнитным инструментом может занять довольно продолжительное время.

Важная деталь – установка. Выбирая модель дефектоскопа имеет смысл задуматься, как долго и насколько сложно его устанавливать. Ручные мобильные приспособления, которые можно достать из сумки в любой момент, предпочтительней для дежурной дефектоскопии в процессе производства или монтажа. Более сложное и точное оборудование требует длительной установки и наладки.

Ультразвуковой прибор требует наладки перед началом работы

Поскольку неразрушающий контроль может производиться как в помещении, так и на улице, в том числе в зимнее время, заранее уточните, можно ли работать выбранным устройством при отрицательных температурах. Также обязательно выяснить, допустимо ли выполнять диагностику в условиях агрессивной среды, если это необходимо.

Зная, как работает дефектоскоп того или иного типа, вы легко сможете определиться с главным – способом дефектоскопии. А определиться с моделью поможет опытный консультант.

strmnt.com

как работают разные типы приборов и где их применяют

Что такое дефектоскоп и для чего он нужен? 

В зависимости от цели дефектоскопии и области его применения, кардинально меняется методика выявления повреждений и брака, на которой основывается работа того или иного дефектоскопа.





УД2-140УДЗ-204Пеленг-415  DIO 1000 LF

Зачем нужна дефектоскопия? 

Дефектоскопия – мероприятия, которые направлены на выявление всевозможных отклонений от проекта и нормативов во время производства или эксплуатации объекта. Дефектоскопия помогает обнаружить неисправность задолго до того, как она даст о себе знать. Таким образом, можно предотвратить поломки механизмов, разрушение конструкций и аварии на производстве. Дефектоскоп – прибор, предназначенный для проверки и выявления дефектов на поверхности или в теле всевозможных изделий. Дефекты могут быть самыми разнообразными. Одни приборы нужны для обнаружения следов коррозии, другие – для поиска полостей, утончения, несоответствия размеров и прочих физико-механических изъянов, а третьи могут определить дефекты на уровне молекулярного строения – найти изменения структуры тела, его химического состава.

В каких отраслях применяется дефектоскопия? 

Дефектоскоп относят к классу приборов под общим названием «средства неразрушающего контроля». В процессе производства изделия часто поддаются всевозможным проверкам. Некоторые детали подвергают испытаниям в лабораториях, где определяют их запас прочности, способность противостоять всевозможным нагрузкам и воздействиям. Недостаток такой методики в том, что она проводится выборочно и не гарантирует 100% качество всей продукции. 

Неразрушающий контроль, к которому относят и проверку дефектоскопом, позволяет оценить состояние конкретного изделия или элемента конструкции на месте и без проведения испытаний. Инструмент незаменим в таких отраслях: строительство; машиностроение; производство металлопроката; энергетика; научно-исследовательские работы; химия; горная промышленность. 

Дефектоскопом проверяют качество соединения (особенно важно это для сварки трубопроводов высокого давления), состояние конструкции в строительстве (металлической, железобетонной), степень износа механизма, наличие повреждения детали. Практически во всех отраслях промышленности, где важно контролировать состояние и соответствие нормам твердых элементов, применяют разные дефектоскопы. Классификация дефектоскопов по методу проверки.

В зависимости от метода проверки, выделяют такие типы дефектоскопов: акустические; вихретоковые; электролитические; искровые; магнитно-порошковые; рентгеновские аппараты; капиллярный; импедансный и другие. Панель управления УЗ дефектоскопа Сравнивать их сложно, они настолько разные по строению, работе и даже внешнему виду, что объединяет их только назначение. Выделить какой-то из приборов и уверенно сказать, что он лучший, универсальный и заменит все остальные невозможно. Поэтому при выборе важно не принимать опрометчивых решений и не покупать первую попавшуюся модель. 

Принцип действия каждого типа дефектоскопов 

Самые популярные дефектоскопы, которыми можно проводить экспертизу неразрушающим методом: ультразвуковой (акустический), магнитный и вихретоковый. Они компактны, мобильны и просты в эксплуатации и понимании принципа. Другие используются не так широко, но каждый прочно занимает свою нишу среди других средств дефектоскопии. 

Акустический – работа ультразвука 

Акустический дефектоскоп – понятие, объединяющее в себе схожие по общему принципу приборы неразрушающего контроля. Основывается акустическая дефектоскопия на свойствах звуковой волны. Из школьного курса физики известно, что основные параметры волны не изменяются при движении в однородной среде. Однако, если на пути волны возникает новая среда, частота и длина ее изменяются. 

Чем выше частота звука, тем точнее результат, поэтому из всего диапазона применяют ультразвуковые волны. Ультразвуковой дефектоскоп излучает звуковые волны, которые проходят сквозь проверяемый объект. Если присутствуют полости, вкрапления других материалов или прочие дефекты, ультразвуковая волна обязательно укажет на них изменением параметров.

Ультразвуковые дефектоскопы, работающие по принципу эхо-метода, являются наиболее распространенными и доступными. УЗ-волна проникает в объект, если дефектов не обнаружено, отражения не происходит, соответственно, прибор ничего не улавливает и не регистрирует. Если же возникло отражение УЗ, это указывает на наличие изъяна. Генератор ультразвука является так же и приемником, что очень удобно и облегчает проведение дефектоскопии. 





УСД-60Н УД2В-П46 УСД-46 УСД-60

 

Зеркальный метод похож на эхо, но используется два устройства – приемник и передатчик. Преимущество такого метода в том, что оба устройства находятся по одну сторону от объекта, что облегчает процесс установки, настройки и произведения замеров. 

Отдельно выделяют методы анализа ультразвука, который прошел через объект насквозь. Используют понятие «звуковая тень». Если внутри объекта присутствует дефект, он способствует резкому затуханию колебаний, то есть, создает тень. На этом принципе основывается теневой метод ультразвуковой дефектоскопии, когда генератор и приемник колебаний располагаются на одной акустической оси с разных сторон. 

Недостатки такого прибора в том, что предъявляются строгие требования к размерам, конфигурации и даже степени шероховатости поверхности проверяемого элемента, что делает устройство не совсем универсальным. 

Вихретоковый – магнитные поля и вихревые токи 

Французский физик Жан Фуко посвятил не один год изучению вихревых токов (токов Фуко), которые возникают в проводниках при создании в непосредственной близости к ним переменного магнитного поля. Основываясь на том, что при наличии в теле дефекта, эти самые вихревые токи создают свое – вторичное магнитное поле, осуществляют дефектоскопию вихретоковые устройства. 

Вихретоковый дефектоскоп создает исходное переменное магнитное поле, а вот вторичное поле, которое и дает возможность выявить и проанализировать недостаток в объекте, возникает в результате электромагнитной индукции. Дефектоскоп улавливает вторичное поле, регистрирует его параметры и делает вывод о виде и качестве дефекта. 

Производительность этого прибора высокая, проверка осуществляется довольно быстро. Однако вихревые токи могут возникать исключительно в тех материалах, которые являются проводниками, поэтому область применения такого девайса значительно уже его аналогов. 

Магнитнопорошковый – наглядная картина 

Еще один распространенный метод дефектоскопии – магнитно-порошковый. Он применяется для оценки сварных соединений, качества защитного слоя, надежности трубопроводов и так далее. Особо ценят это метод для проверки сложных по форме элементов и труднодоступных для других приборов участков. 

Принцип работы магнитного дефектоскопа основан на физических свойствах ферромагнитных материалов. Они имеют способность намагничиваться. При помощи постоянных магнитов или специальных устройств, которые могут создавать продольное или циркулярное магнитное поле. 

После воздействия на участок объекта магнитом, на него сухим или мокрым способом наносят так называемый реагент – магнитный порошок. Под действием магнитного поля, которое возникло в результате намагничивания, порошок соединяется в цепочки, структурируется и образует на поверхности четкий рисунок в виде изогнутых линий. 

Зная его особенности и основные параметры, при помощи магнитного дефектоскопа можно определить, в каком месте располагается дефект. Как правило, непосредственно над изъяном (трещиной или полостью) наблюдается ярко выраженное скопление порошка. Для определения характеристик дефекта, полученную картинку сверяют с эталоном. 

Остальные виды и их принцип действия 

Методы дефектоскопии совершенствуются с каждым годом. Появляются новые методики, другие постепенно изживают себя. Многие дефектоскопы имеют довольно узкоспециализированное назначение и применяются только в определенных отраслях промышленности. 

Принцип работы феррозондового дефектоскопа основывается на оценке импульсов, возникающих при движении устройства вдоль объекта. Применяется в металлургии, при производстве металлопроката и диагностики сварных соединений. 

Радиационный дефектоскоп облучает объект рентгеновскими лучами, альфа-, бета-, гамма-излучением или нейтронами. В результате получают подробный снимок элемента со всеми присутствующими дефектами и неоднородностями. Метод дорогой, но очень информативный. 

Капиллярный дефектоскоп выявляет поверхностные трещины и несплошности в результате воздействия на объект специальным проявляющим веществом. Оценка результата производится визуальным методом. Применяется капиллярная дефектоскопия по большей части в машиностроении, авиации, судостроении. 

В энергетике для анализа работы и выявления несовершенства элементов, находящихся под высоким напряжением, применяют электронно-оптический дефектоскоп. Он способен уловить малейшие изменения коронных и поверхностно-частичных разрядов, что дает возможность оценить работу оборудования без его остановки – дистанционно.

 

litas.ru

Как правильно выбрать дефектоскоп?

Также производитель обязательно указывает, для каких материалов предназначен конкретный дефектоскоп, недочеты какого характера он должен выявлять. Могут предъявляться требования к характеру поверхности элемента, наличию защитного слоя, размерам и форме объекта.


Основные параметры, на которые следует обратить внимание при выборе дефектоскопа любого типа:

  • диапазон;
  • назначение;
  • производительность;
  • сложность монтажа;
  • диапазон температур;
  • надежность.

Под параметром «производительность» подразумевается скорость сканирования и объем работы, который можно выполнить за единицу времени при помощи определенного дефектоскопа. Так, вихретоковый и феррозондовый способы обеспечивают высокую скорость, в то время как процесс намагничивания и обработки каждого отдельного участка магнитным инструментом может занять довольно продолжительное время.





УД2-140УДЗ-204Пеленг-415  DIO 1000 LF

 

Важная деталь – установка. Выбирая модель дефектоскопа имеет смысл задуматься, как долго и насколько сложно его устанавливать. Ручные мобильные приспособления, которые можно достать из сумки в любой момент, предпочтительней для дежурной дефектоскопии в процессе производства или монтажа. Более сложное и точное оборудование требует длительной установки и наладки.

Поскольку неразрушающий контроль может производиться как в помещении, так и на улице, в том числе в зимнее время, заранее уточните, можно ли работать выбранным устройством при отрицательных температурах. Также обязательно выяснить, допустимо ли выполнять диагностику в условиях агрессивной среды, если это необходимо.

Зная, как работает дефектоскоп того или иного типа, вы легко сможете определиться с главным – способом дефектоскопии. А определиться с моделью поможет опытный консультант.

litas.ru

Как правильно выбрать ультразвуковой дефектоскоп

Качественный контроль производства и строительства должен выполняться на каждом шаге. Порой проверить работу объекта необходимо уже во время эксплуатации. Прибор, который помогает проводить подобного рода экспертизу неразрушающим способом, называется дефектоскоп. Кстати, купить ультразвуковой дефектоскоп можно на сайте pgpribor.com. Видов дефектоскопов есть очень и очень много. Выделяются они по функционалу и назначению. Поизучайте очень популярные способы дефектоскопии и полезные советы по выбору устройства, чтобы не прогадать во время выбора и быстро постичь работу.

Что такое дефектоскоп и зачем он необходим

В зависимости от цели дефектоскопии и области его использования, радикально меняется методика обнаружения повреждений и брака, на которой базируется работа того либо другого дефектоскопа.

Для чего необходима дефектоскопия

Дефектоскопия – мероприятия, которые направлены на обнаружение различных отклонений от проекта и норм при изготовлении или эксплуатации объекта. Дефектоскопия помогает выявить поломку прежде, как она о себе даст знать. Аналогичным образом, можно не допустить неполадки механизмов, разрушение конструкций и аварии на производстве.

Дефектоскоп – прибор, который предназначен для проверки и обнаружения недостатков на поверхности или в теле различных изделий. Недостатки бывают самыми разными. Одни приборы необходимы для нахождения следов коррозии, иные – с целью поиска полостей, утончения, несоответствия размеров и других физико-механических изъянов, а третьи могут определить недостатки на уровне молекулярного сооружения – отыскать изменения структуры тела, его химического состава.

В каких ветвях применяется дефектоскопия

Дефектоскоп относят к классу приборов под общим наименованием «средства неразрушающего контроля». В производственном процессе изделия часто поддаются различным проверкам. Кое-какие детали подвергают испытаниям в лабораториях, где формируют их прочностный запас, способность сопротивляться различным нагрузкам и влияниям. Минус такой методики в том, что она ведется выборочно и не гарантирует 100% качество всей продукции.

cfrl.ru

Ультразвуковой дефектоскоп – устройство и методы исследования + видео

Ультразвуковой дефектоскоп – один из самых доступных и распространенных приборов для обнаружения несовершенств изделий из различных материалов. Принцип его действия почти не ограничивает его в применении, причем является неразрушающим, поэтому все больше сфер промышленности и науки берут его на вооружение. Разберемся и мы, в чем суть его работы.

Дефектоскоп акустический и его методы исследования

Принцип работы ультразвукового дефектоскопа основан на природе звука. Так как посылаемый импульс является волной, то любая преграда на его пути станет причиной его отражения. А уже приходящий обратно отраженный импульс фиксируется датчиком и анализируется. Существует несколько основных подходов, которыми осуществляется дефектоскопия с помощью ультразвука: теневой, зеркально-теневой и эхо-методика. Это все импульсные методы, а есть еще более специфические, но используются редко и сложны для понимания, например, резонансный, импедансный, ревербационный и другие. Поэтому коснемся только популярных и более доступных рядовым гражданам.

Теневой метод улавливает ослабление возвращенного сигнала, в этом случае наблюдается пониженная энергия (интенсивность, амплитуда) или вовсе смена фазы, вызванная огибанием дефектного места. Но этот метод неудобен тем, что потребует доступа к объекту анализа с двух сторон, так как сигнал выходит от пьезоизлучателя, а принимается уже другим преобразователем. Отсюда исходит и невысокая точность результатов, вернее координат местоположения препятствия в изделии. Однако для грубой оценки качества изделия метод вполне пригоден, и не требует идеального состояния исследуемой поверхности, а результат можно получить и при наличии некоторого фона помех. Чаще всего встречается такой метод при анализе сварочных швов.

Зеркально-теневой способ оценки дефектов призван оценить интенсивность импульса, отраженного от противоположной стенки образца. То есть сигнал все же проходит через весь объект, потому что препятствия небольшие и расположены перпендикулярно той плоскости, по которой перемещается преобразователь, поэтому почти не влияют на отражение волны. Примером могут служить вертикальные трещины. Но все же интенсивность обратно идущей (донной) волны они немного ослабляют, хоть и очень незначительно. Отдельно такой метод используется редко, чаще в качестве дополнительного этапа обнаружения мелких дефектов, которые не дают явного сигнала на отражение. Достоинство способа в том, что он не требователен к качеству поверхности, не требует доступа с двух сторон. Правда, координаты точно он также вам не сообщит, скажет только о фактическом наличии дефекта.

Эхо-метод – самый популярный и более достоверный, выявляет поверхностные и объемные дефекты с хорошей точностью, при любой их ориентировке. Анализирует металлы и многие строительные материалы, например, бетонные конструкции, дерево и другие. Главное условие – ощутимое взаимодействие с ультразвуком. Фиксировать результаты анализов можно на осциллоскопе или с помощью самописца. Метод более надежный и объективный, к тому же, очень чувствительный. Принцип его также основан на запуске коротких импульсов в образец и анализе отраженных волн, улавливаемых датчиком.

Ультразвуковой дефектоскоп – природа импульсов

Отпечаток на особенности анализа акустическим методом накладывает физика звука. Волна достаточно ощутимо может рассеиваться воздухом в силу его сопротивления звуку, поэтому при измерениях поверхность образца определенным образом подготавливают. Во-первых, делают ее несколько шероховатой, причем если обследуют какую-то узкую полосу изделия, то наносимые зазубрины должны быть перпендикулярны этой полосе (например, сварный шов). Во-вторых, для исключения сопротивления воздуха наносят каплю контактной жидкости, это может быть обычная вода или же масло.

Если граница объекта расположена вертикально, то контактная жидкость должна быть очень густой, чтобы не стекла при первой же возможности.

Сам ультразвуковой импульс генерируется посредством пьезоэффекта, хоть он и не единственный, но уж точно самый доступный. Для тех, кто внимательно изучал физику хотя бы в школе, не будет новым определение обратного пьезоэлектрического эффекта, на основе которого и создан преобразователь акустического дефектоскопа. Он берет сигнал от электрического генератора, а уже в образец заходят ультразвуковые волны. По возвращению УЗ-сигнал попадает на такой же преобразователь, но уже с прямым пьезоэффектом, поэтому становится возможным регистрация полученного сигнала в виде электрических импульсов.


Схема ультразвукового дефектоскопа и области применения

Дефектоскоп акустический может определять множество видов неоднородностей в объеме, в том числе и химических изменений. Областей, в которых этот прибор востребован, бесчисленное множество: машиностроение, химия и нефть, энергетика, исследовательские лаборатории, приборостроение и механическое производство, строительство. Измеряют пустоты, уплотнения, химические процессы, сварные швы, клеевые соединения, есть возможность следить за структурой деталей в движении прямо на прокатной линии. Размер дефектов, которые может видеть данный прибор, определяется длиной волны. Если нарушение структуры имеет размер меньше ¼ длины волны, то видно его не будет.

Схема ультразвукового дефектоскопа содержит генератор электроимпульсов, попадающих на преобразователь, который в процессе анализа обращен к образцу и возбуждает в нем ультразвуковой импульс. Эта волна идет по объему исследуемого объекта и отражается от первого попавшегося дефекта либо от противоположной стенки образца, если дефектов нет. Отраженная волна попадает снова на преобразователь, оттуда сигнал проходит через усилитель, а потом направляется на электронно-лучевую трубку, которая соединена с генератором развертки. На этом этапе и рождается график (спектр) плотности образца, анализируются два параметра из этой развертки – амплитуда пиков и время прихода сигнала.

Настройка ультразвукового дефектоскопа – суть процесса

Любой прибор перед работой следует отрегулировать или проверить его параметры от завода-изготовителя. Настройка ультразвукового дефектоскопа делается с помощью матричного устройства, регламентируемым специальными ГОСТами. На нем нанесены плоские угловые отражатели, которые при использовании дефектоскопа будут вести себя, как дефекты с определенными размерами и формой. Матричное устройство сканируется по различным отражателям, получаются сигналы и соответствующие графики, они анализируются, а значения заносятся в таблицу.

По таблице создается график-аттестат, на котором показывается зависимость амплитуд получаемых сигналов от размеров плоских отражателей на матричном устройстве. Потом с шагом 2 дБ фиксируют по этой зависимости значения амплитуд получаемого импульса и анализируют, линейная ли зависимость получается. Также наблюдается ее корреляция с полем допуска, обозначенным соответствующим стандартизирующим документом. Если она из поля выпадает, дефектоскоп нуждается в перенастройке.

remoskop.ru

Дефектоскоп ультразвуковой и вихретоковый дефектоскоп. Принцип работы

 О чем эта статья

Вы узнаете какие несовершенства материалов могут измерить дефектоскопы. Какие бывают типы дефектоскопов и познакомитесь с устройством двух их них: ультразвуковых и вихретоковых. А также узнаете на какие параметры нужно обращать внимание при покупке дефектоскопов.
Вы также можете посмотреть другие статьи. Например, «Виды, устройство и принцип действия расходомеров» или «Психрометр Асмана».

Перейти к выбору и покупке дефектоскопов

Дефектоскоп – устройство, с помощью которого осуществляется обнаружение и локализация внешних и внутренних дефектов твёрдых тел методами неразрушающего контроля. Не путать с датчиками деформации используемыми для определение деформации объекта – изгибов, скручивания и тд. К дефектам можно отнести трещины, полости, коррозионные поражения, неоднородности и прочие нарушения внутренней структуры твёрдого тела. В основу работы дефектоскопов могут быть положены различные физические эффекты, от этого напрямую зависят базовые параметры устройства, такие как род материала твёрдого тела или точность локализации дефекта.

Дефектоскопы могут быть:

  • Импедансными
  • Резонансными
  • Магнитно-порошковыми
  • Вихретоковыми
  • Ультразвуковые (Акустические)
  • Капиллярными
  • Электронно-оптическими

 

В рамках данного обзора рассмотрены два вида дефектоскопов, имеющих наиболее широкое распространение: ультразвуковые и вихретоковые.

Ультразвуковые дефектоскопы

Принцип действия

В основу функционирования дефектоскопа данного типа положено свойство проникновения ультразвуковых волн в твёрдые тела. Скорость распространения УЗ-волны в основном зависит от следующих параметров среды:

  • Плотность среды
  • Упругость среды
  • Наличие дефектов (трещины, пустоты)

 

Датчик имеет источник и приёмник ультразвуковых волн. Если между источником (A) и приёмником (B) поместить исследуемый объект и измерять время прохождения волн от A к B, можно, зная расстояние AB, определить скорость распространения ультразвуковой волны через конкретный участок твёрдого тела (Рисунок 1). Это даёт возможность исследовать внутреннюю структуру твёрдого тела на наличие дефектов, колебаний плотности и модуля упругости.


Рисунок 1. Обнаружение скрытого дефекта с помощью ультразвукового дефектоскопа.

Другая реализация акустического дефектоскопа использует так называемый эхо-метод. Прибор содержит источник и регистратор УЗ-волн (Рисунок 2). Волны, отражаясь от внутренних дефектов, попадают на регистратор. Если дефектов нет, или же они в силу своей структуры или пространственной конфигурации не отражают УЗ-волны, регистратор ничего не обнаружит. В противном случае будет зафиксирован отражённый сигнал, по параметрам которого можно судить о физических и геометрических характеристиках дефекта.


Рисунок 2. Обнаружение скрытого дефекта с помощью ультразвукового дефектоскопа (эхо-метод).

Описанные методы могут использоваться как по отдельности, так и в комплексе.

Достоинства:

  • Метод пригоден для обследования тел практически из любых материалов
  • Широкий выбор устройств в продаже

 

Недостатки:

  • Определённые требования к типу и шероховатости поверхности исследуемого объекта, а также к его геометрии и размерам
  • Высокая стоимость

В качестве примера ультразвукового дефектоскопа можно привести прибор российской фирмы прометей — УДЗ-71.

Вихретоковые дефектоскопы

Принцип действия

Если рядом с объектом из ферромагнитного материала (скажем, из стали) создать переменное магнитное поле, внутри материала объекта индуцируются вихревые токи (токи Фуко). Вихревые токи, в свою очередь также создают магнитное поле, противодействующее внешнему магнитному воздействию (Рисунок 3). Параметры вторичного магнитного поля фиксируются. Если внутри материала объекта имеются несовершенства (трещины, полости, прочие дефекты), это повлияет на конфигурацию вихревых токов, и, следовательно, на параметры создаваемого ими магнитного поля. Фиксируя эти изменения, можно получить информацию о внутренних дефектах объекта.


Рисунок 3. Обнаружение скрытого дефекта с помощью вихретокового дефектоскопа.

Достоинства:

  • Относительно высокая скорость диагностики
  • Высокая точность

 

Недостатки:

  • Ограниченный диапазон материалов исследуемых тел
  • Высокая стоимость

Неплохой образец дефектоскопа этого типа можно найти в каталоге фирмы априори системс — 245МД.

Параметры, на которые следует обратить внимание при выборе дефектоскопа

  1. Диапазон измерения и разрешение. Основные точностные параметры дефектоскопа, определяющие глубину проникновения зондирующего воздействия в материал, а также точность определения размеров, расположения и конфигурации дефекта.
  2. Скорость сканирования. Данный параметр определяет общее быстродействие системы контроля на базе дефектоскопа. Увеличение скорости сканирования обычно ведёт к падению точности измерений.
  3. Способ установки. Дефектоскопы могут монтироваться непосредственно на производственной линии, а также выполняться в компактном варианте, пригодном для переноски.
  4. Степень защиты. Поскольку дефектоскопы могут использоваться в неблагоприятных и агрессивных условиях, необходимо обратить внимание на параметры их защиты. Это может быть индекс IP/IK или другие характеристики, указывающие на уровень защищённости дефектоскопа от внешних воздействий (влаги, давления и пр.)
  5. Температурный диапазон. Выход за границы температурного диапазона приводит к увеличению погрешности измерения и может послужить причиной выхода дефектоскопа из строя.

Опубликована 06-02-12.


Если вам понравилась статья нажмите на одну из кнопок ниже

www.devicesearch.ru.com

Ультразвуковые дефектоскопы — Ультразвуковой контроль — НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ — Оборудование и комплектующего для неразрушающий контроля, физико-механических испытаний, пробоподготовки, спектрального анализа 8 (495) 134-69-69

Ультразвуковые дефектоскопы предназначены для обнаружения дефектов в изделиях из различных металлических и неметаллических материалов методами ультразвуковой дефектоскопии. В зависимости от задач они бывают следующих видов: импульсные, импедансные, резонансные.
У нас вы можете купить дефектоскопы USM 36, USM-Go+, Mentor UT, Phasor XS (CV/DM), USN 60, USLT2000, Spotchecker, USM Vision +, ультразвуковые дефектоскопы серии А12, УД и УИУ Сканер.



Линейка Krautkramer представлена несколькими передовыми ультразвуковыми дефектоскопами: USM Go +; USM 36, USN 60.
Преимуществами всех приборов и комплектующих производства GE Sensing & Inspection Technologies являются:

  • Высочайшее качество всех компонентов, составляющих приборы этого производителя;

  • Контроль на всех этапах производства каждого аппарата;

  • Мощный интеллектуальный резерв компании.

Оборудование Krautkramer широко применяется для контроля качества в нефтяной и газовой промышленности, энергетической, аэрокосмической, транспортной, строительной, металлообрабатывающей, химической, металлургической и других отраслях.

Основные технические преимущества линейки ультразвуковых дефектоскопов Krautkramer:

  • Высокая частота повторения импульсов 15...2000 Гц (6000 для USN 60)

  • Генератор прямоугольных импульсов ( 300 В для USM и 450 B для USN). Данное преимущество позволяет прозвучивать большие толщины и материалы с высоким затуханием (поковки из черных и цветных металлов, литье), чем не могу похвастаться конкуренты, такие как А1212, А1214

  • Большой диапазон частот 0,2 … 20 МГц и большое количество узкополосных фильтров (1,0, 2,0, 2,25, 4, 5, 7,5, 10, 15 МГц)

  • Диапазон прозвучивания до 14000 мм.

  • Класс надежности дефектоскопов Krautkramer не ниже IP66, этим они превосходят такие дефектоскопы как А1212, А1214, Epoch, OmniScan.


USM Go+ - аналог УСД46


Если вы хотитекупить ультразвуковой дефектоскопи выбираете между двумя моделями - USM Go+ из линейки Krautkramer и дефектоскопом УСД 46, то следующий абзац поможет вам узнать наиболее важные различия данных моделей.

  • Дефектоскоп компании GE USM Go+ имеет генератор прямоугольных импульсов, с амплитудой 300В, что на 100 больше, чем у УСД 46. Это преимущество дает возможность контролировать поковки и литье, что дефектоскоп УСД 46 не способен сделать.

  • Диапазон ЧПИ намного шире, от 15 до 2000 Гц, когда как у УСД 46— от 40 до 400 Гц. Широкий диапазон ЧПИ дает возможность контролировать с высокой вероятностью выявления дефекта как тонких, так и толстых изделий.

  • Полоса пропускания USM Go+ шире, чем у дефектоскопа УСД 46.

USM Go+ имеет нижнюю границу 0,2 МГц, когда как УСД 46 только 0,5. Это дает возможность подключения специализированных низкочастотных датчиков, которые могут контролировать крупнозернистые стали и поковки, материалы с высоким затуханием ультразвука.

Ультразвуковые дефектоскопы USM 36 и УСД-50: сравнительные характеристики

Если вы хотите купить ультразвуковой дефектоскоп и выбираете между моделями USM 36 и УСД 50, то вам поможет эта статья, в ней сравниваются самые важные характеристики данных дефектоскопов.

  • Ультразвуковой дефектоскоп USM 36 обладает большей мощностью по сравнению с дефектоскопом УСД 50. Амплитуда прямоугольного импульса в 300В в комбинации с максимальным усилением до 110 Дб значительно превосходят аналогичные характеристики у дефектоскопа УСД 50 (200В, усиление 110 Дб). Тем самым возможности контроля увеличиваются за счет увеличения диапазона прозвучивания.

  • Диапазон ЧПИ (15-2000 Гц) дефектоскопа USM 36 превосходит аналогичную характеристику дефектоскопа УСД 50 (40/800). Тем самым можно производить контроль с большой скоростью на малых толщинах c высокой вероятностью выявления дефектов.

 


Ультразвуковой дефектоскоп Phasor XS 16/16 на фазированных решетках


Простой, удобный и практичный в эксплуатации ультразвуковой дефектоскоп Phasor XS 16/16 отличается высокой производительностью и минимальными расходами, что считается оптимально пригодным для производственной оценки.
Прочный и надежный корпус портативного дефектоскопа Phasor XS 16/16, небольшой вес (менее 4,0 кг) позволяют эксплуатировать прибор на самых сложных участках работы. Показатели влаго- и пылезащиты соответствуют классу IP54. Простое управление настройками дефектоскопа подходит для специалистов, имеющих аттестацию II уровня по ультразвуковому методу контроля и не требует дополнительного обучения. Все необходимые данные легко собираются, анализируются и архивируются.

Основным преимуществом является возможность контролировать поковки из черных и цветных металлов методом фазированных решеток.

Phasor XS — отличная замена ультразвуковому дефектоскопу УСД-60

Дефектоскоп УСД-60 может реализовывать только стандартную дефектоскопию, когда как Phasor XS сочетает в себе возможность использования метода Фазированных решеток с удобством стандартного УЗ канала.
Ультразвуковой дефектоскоп Phasor превосходит УСД-60 по многим параметрам:

  • ЧПИ: 15-2000 Гц (стандартный УЗ канал), 15-7680 Гц (канал на ФР), когда как у УСД 60 он 20...2000 Гц.

  • Генератор импульсов Phasor XS 16/16 гораздо мощнее чем у ультразвукового дефектоскопа УСД 60. Phasor выдает 300В (с шагом 10В) прямоугольного импульса с возможностью усиления до 110 Дб, когда УСД 60 может либо 50 либо 200В без промежуточных значений амплитуды сигнала с усилением до 100 Дб. Данное преимущество позволяет контролировать большие толщины, материалы с высоким затуханием и высоколегированные стали.

Контроль сварных швов: ультразвуковые дефектоскопы 

При ультразвуковом контроле сварных соединений применяют методы отраженного излучения и прошедшего излучения по ГОСТ 18353, а также их сочетания, реализуемые способами (вариантами методов), схемами прозвучивания, регламентированными настоящим стандартом.

Основным стандартом является ГОСТ Р 55724 — 2013 Контроль неразрушающий. Сварные соединения. Методы ультразвуковые.

Технология проведения ультразвукового контроля

Технология акустического контроля сварки зависит от типа сварного соединения и от требований, предъявляемых к качеству изделия. Технология проведения акустического контроля можно условно разделить на несколько основных этапов:

1. Контроль сварного соединения внешним осмотром;

2. Выбор метода контроля и типа преобразователя;

3. Определение границ перемещения преобразователя;

4. Подготовка поверхности сварного соединения для контроля;

5. Размещение, включение, проверку работоспособности приборов и оборудования для контроля, их настройкам;

6. Прозвучивание металла сварного шва и зоны термического влияния;

7. Оформление данных, полученных при контроле;

8. Определение качества сварки, исходя из результатов;

9. Оценка качества сварки, исходя из результатов контроля.

 

Выбор ультразвукового дефектоскопа для контроля сварных соединений

 

Рассмотрим основные факторы, влияющие на выбор дефектоскопа для контроля сварных швов.
Выбор дефектоскопа для сварных соединений зависит от многих параметров:

Для металлов с крупнозернистой структурой следует выбирать дефектоскопы с высокой амплитудой прямоугольного импульса для обеспечения прохождения УЗ волны через границы зерен. Сигнал с малой амплитудой может сильно исказиться и затухнуть.

Для основного металла сварного соединения более 60мм применяются те же требования, что указаны выше. Данными особенностми генератора обладают дефектоскопы GE линейки Krautkramer: USM Go+, USM 36, USN 60, Phasor XS.

Чем лучше зачищена поверхность объекта контроля, тем меньше она будет влиять на сигнал. Неровная поверхность рассеивает волну, искажая достоверность результатов контроля.

Некачественно удаленное усиления шва препятствует перемещению преобразователя над корнем шва.

Соответственно, в зависимости от поверхности, применяются преобразователи с различными типами протекторов (твердые, мягкие, истираемые). От выбора преобразователя будет зависеть качество получаемых результатов.

У каждого сварного соединения есть своя специфика и сложности контроля. До некоторых дефектов бывает добраться очень сложно, что заставляет усложнить схему контроля. Дефектоскоп для контроля сварных соединений должен обладать возможностью использовать все типы преобразователей и схемы их подключения. Многоканальная система позволяет расширить возможности, вплоть до подключения большого количества преобразователей. USIP 40 является многоканальной системой, как раз решающей большинство из перечисленных выше задач.

Дефекты могут иметь различную форму и размеры, быть протяженными и точечными, одиночными и скоплениями. Стандартный УЗ метод зачастую не может охватить несколько дефектов сразу и не создается полной картины дефектного участка. Методом фазированных решеток можно провести секторное сканирования участка сварного соединения и наблюдать скопления пор, трещин и прочих несплошностей.

Phasor XS как раз способен использовать все возможности фазированных решеток для поиска дефектов. После выявления можно переключить на стандартный УЗ канал и провести контроль уже в месте, где точно расположен дефект и далее по ГОСТу его задокументировать.

Важно: Ультразвуковой дефектоскоп для сварных швов должен соответствовать ГОСТ 23667-85

 


Спецпредложение от НПФ «АВЭК»

 

Официальный дистрибьютор GE Sensing & Inspection Technologies, НПФ «АВЭК» предлагает Вам особые условия по приобретению дефектоскопов линейки Krautkramer, а именно:

  • Дилерские цены за счёт прямых поставок от завода-изготовителя в Европе;

  • Весь комплект сертификатов и сопутствующей документации;

  • Гарантийную и послегарантийную техническую и метрологическую поддержку силами собственной сервисной службы и специалистов, прошедших обучение в Германии;

  • Доставку в любой регион России и СНГ.

  • Оперативную отгрузку со склада (приборы в наличии!)

Производитель: GE Inspection Technologies

Компактный ультразвуковой дефектоскоп USM 36.

Производитель: GE Inspection Technologies

Компактный ультразвуковой дефектоскоп универсального применения.

Производитель: GE Inspection Technologies

Дефектоскоп на фазированных решетках Mentor UT сочетает в себе высокую производительность ультразвукового контроля в сочетании с существующими достижениями в программном обеспечении.

Производитель: ZETEC

TOPAZ 16 - ультразвуковой дефектоскоп с полностью интегрированными 16 активными каналами фазированных решеток.

Производитель: ZETEC

TOPAZ 32 - ультразвуковой дефектоскоп с полностью интегрированными 32 активными каналами фазированных решеток.

Производитель: ZETEC

TOPAZ 64 - ультразвуковой дефектоскоп с полностью интегрированными 64 активными каналами фазированных решеток, беспечивающий более быструю и точную проверку.

Производитель: GE Inspection Technologies

Ультразвуковой дефектоскоп на фазированных решетках Phasor XS 16/64.

Производитель: GE Inspection Technologies

Дефектоскопы на фазированных решетках Phasor XS 16/16. ООО НПФ "АВЭК" является официальным дистрибьютором GE Sensing & Ispection Technologies.

Производитель: GE Inspection Technologies

Ультразвуковой дефектоскоп на фазированных решетках Phasor XS CV/DM.

avek.ru

Приборы неразрушающего контроля — Википедия

Прибо́ры неразруша́ющего контро́ля — средства используемые при различных методах неразрушающего контроля для определения свойств и параметров, и оценки надёжности объекта, конструкции или сварного шва.

Прибор для ультразвукового контроля двигателя V2500

Дефектоскоп — прибор неразрушающего контроля для выявления и оценки внутренних и поверхностных дефектов материалов и изделий. В зависимости от метода неразрушающего контроля, дефектоскопы можно классифицировать на вихретоковые, магнитные, ультразвуковые.

Дефектоскоп — устройство для обнаружения дефектов в изделиях из различных металлических и неметаллических материалов методами неразрушающего контроля. К дефектам относятся нарушения сплошности или однородности структуры, зоны коррозионного поражения, отклонения химического состава и размеров и др. Область техники и технологии, занимается разработкой и использованием дефектоскопов называется дефектоскопией. С дефектоскопами функционально связаны и другие виды средств неразрушающего контроля: течеискатели, толщиномеры, твердомеры, Структуроскопы, интроскопы и Стилоскоп.

Импульсные ультразвуковые дефектоскопы[править | править код]

Испытания сварного шва трубопровода на наличие дефектов с использованием ультразвукового инструмента с фазированной решеткой.

В импульсных дефектоскопах используются эхо-метод, теневой и зеркально-теневой методы контроля. Эхо-метод основан на посылке в изделие коротких импульсов ультразвуковых колебаний и регистрации интенсивности и времени прихода эхо, отраженных от несплошностей (дефектов). Для контроля изделия датчик еходефектоскопа сканирует его поверхность. Метод позволяет обнаруживать поверхностные и глубинные дефекты с различной ориентацией. При теневом методе ультразвуковые колебания, встретив на своем пути дефект, отражаются в обратном направлении. О наличии дефекта судят по уменьшению энергии ультразвуковых колебаний или по изменению фазы ультразвуковых колебаний, огибающих дефект. Метод широко применяют для контроля сварных швов, рельсов и др.

Зеркально-теневой метод используют вместо или в дополнение к эхо-метода для выявления дефектов, дающих слабое отражение ультразвуковых волн в направлении раздельно-совмещенного преобразователя. Дефекты (например, вертикальные трещины), ориентированные перпендикулярно к поверхности, по которой перемещают преобразователь (поверхности ввода), дают очень слабый рассеянный и донный сигналы благодаря тому, что на их поверхности продольная волна трансформируется в главную, которая в свою очередь излучает боковые волны, уносящие энергию. Пример применения зеркально-теневого метода — контроль рельсов на вертикальные трещины в шейке. По чувствительности этот метод обычно в 10-100 раз хуже эхо-метода.

При контроле сварных соединений необходимо обеспечивать тщательное прозвучивание всего шва металла. Ультразвуковые волны вводятся в шов через основной металл с помощью наклонных акустических преобразователей. При поиске дефектов делают продольно-поперечное перемещение (сканирование) преобразователя вдоль шва, одновременно осуществляя его вращательное движение. Чувствительность ультразвукового контроля определяется минимальными размерами выявленных дефектов или эталонных отражателей (моделей дефектов). В качестве эталонных отражателей обычно используют плоскодонные сверления, ориентированные перпендикулярно направлению прозвучивания, а также боковые сверления или зарубки.

Принцип работы основан на определении различия полного механического сопротивления (импеданса) дефектного участка по сравнению с доброкачественным, для чего контролируемая поверхность сканируется с помощью двух пьезоэлементов, один из которых возбуждает колебания в материале, а другой воспринимает колебания. Импедансные дефектоскопы предназначены для выявления дефектов, расслоений, пористости и нарушения целостности композитных материалов и сотовых структур в авиастроении, космической, автомобильной и других отраслях промышленности.

Резонансный метод основан на определении собственных резонансных частот упругих колебаний (частотой 1 — 10 МГц) при возбуждении их в изделии. Этим методом измеряют толщину стенок металлических и некоторых неметаллических изделий. При возможности измерения с одной стороны погрешность измерения — около 1 %. Кроме того, с помощью резонансной дефектоскопии можно выявлять зоны коррозионного поражения. Вариантом резонансного метода является спектрально-акустическая дефектоскопия .

Распределение магнитного поля вокруг дефекта в ферромагнитном материале

Дефектоскоп позволяет контролировать различные по форме детали, сварные швы, внутренние поверхности отверстий путем намагничивания отдельных контролируемых участков или изделия в целом циркулярным или продольным полем, создаваемым с помощью набора намагничивается устройств, питающихся импульсным или постоянным током, или с помощью постоянных магнитов. Принцип действия основан на создании поля рассеяния над дефектами контролируемой детали с последующим выявлением их магнитной суспензией. Наибольшая плотность магнитных силовых линий поля рассеяния наблюдается непосредственно над трещиной (или над другой несплошное) и уменьшается с удалением от неё[1].

Для выявления несплошности на поверхность детали наносят магнитный порошок, взвешенный в воздухе (сухим способом) или в жидкости (мокрым способом). На долю в поле рассеяния будут действовать силы: магнитного поля, направленная в область наибольшей плотности магнитных силовых линий, то есть до места расположения трещины; тяжести; выталкивающей действия жидкости; трения; силы электростатического и магнитного взаимодействия, возникающих между частицами. В магнитном поле частицы намагничиваются и соединяются в цепочки. Под действием результирующей силы частицы притягиваются к трещине и накапливаются над ней, образуя скопления порошка. Ширина полоски (валика) с оседлой порошка значительно больше ширины раскрытия трещины. По этому осаждению (индикаторному рисунку) определяют наличие дефектов.

Принцип действия основан на методе вихревых токов, который заключается в нарушении вихревых токов в локальной зоне контроля и регистрации изменений электромагнитного поля вихревых токов, обусловленных дефектом и электрофизическими свойствами объекта контроля. Характеризуется небольшой глубиной контроля. Используется для обнаружения трещин и несплошности материала на глубине до 2 мм.

Феррозондовые используют метод магнитной дефектоскопии, основанный на том, что при движении феррозондовые (чувствительного элемента, реагирующего на изменение магнитного поля) вдоль изделия производятся импульсы тока, форма которых зависит от наличия дефектов в изделии. Высокая чувствительность дефектоскопов-градиентометры позволяет выявлять дефекты с шириной раскрытия в несколько микрометров и глубиной от 0,1 мм. Возможно выявление дефектов немагнитным покрытием толщиной до 6 мм. Шероховатость контролируемых поверхностей — до Rz 320 мкм. Дефектоскопы-градиентометры применяются для контроля литых деталей, проката, сварных соединений.

Принцип действия основан на электрическом пробое воздушных промежутков между соприкасающимися поверхностями изоляционного покрытия щупом, подключенным к одному полюсу источника высокого напряжения, и диагностируются объектом, подключенным к другому полюсу источника высокого напряжения непосредственно или через почву с помощью заземления.

Принцип действия термоэлектрических дефектоскопов основан на измерении ЭДС (термо-ЭДС), возникающая в замкнутой цепи при нагреве места контакта двух разнородных материалов. Если один из этих материалов принять за эталон, то при заданной разности температур горячего и холодного контактов величина и знак термо-ЭДС определяться химическим составом второго материала. Этот метод обычно применяют в тех случаях, когда нужно определить марку материала, из которого состоит полуфабрикат или элемент конструкции (в том числе, в готовой конструкции).

В радиационных дефектоскопах осуществляется облучения объектов рентгеновскими, α, β и γ лучами, а также нейтронами. Источники излучений — рентгеновские аппараты, радиоактивные изотопы, линейные ускорители, Бетатрон, Микротрон. Радиационное изображение дефекта превратят в радиографический снимок (радиография), электрический сигнал (радиометрия) или световое изображение на выходном экране радиационно-оптического преобразователя или прибора (радиационная интроскопия, радиоскопия).

Первый радиационный дефектоскоп был внедрен в 1933 году на Балтийском судостроительном заводе изобретателем Л. В. Мысовскую и использовался для выявления дефектов литья в толстых металлических плитах к печам «Мигге-Перроу».

Инфракрасные дефектоскопы используют инфракрасные (тепловые) лучи для обнаружения непрозрачных для видимого света включений. Так называемое инфракрасное изображение дефекта получают в проходящем, отраженном или собственном излучении исследуемого изделия. Дефектные участки в изделии изменяют тепловой поток. Поток инфракрасного излучения пропускают через изделие и регистрируют его распределение теплочувствительным приемником.

Радиодефектоскопия основана на проникающих свойствах радиоволн сантиметрового и миллиметрового диапазонов (микрорадиоволн), позволяет выявлять дефекты главным образом на поверхности изделий обычно из неметаллических материалов. Радиодефектоскопия металлических изделий из-за малой проникающей способностью микрорадиоволн ограничено. Этим методом определяют дефекты в стальных листах, прутьях, проволоке в процессе их изготовления, а также измеряют их толщину или диаметр, толщину диэлектрических покрытий и т. Д. От генератора, работающего в непрерывном или импульсном режиме, микрорадиоволн через рупорные антенны проникают в изделие и, пройдя усилитель принятых сигналов, регистрируются приемным устройством.

ЭОД предназначены для дистанционного контроля высоковольтного энергетического оборудования, находящегося под напряжением. В основе метода диагностики лежит определение характеристик коронных (КР) и поверхностно-частичных разрядов (ПЧР), а также их зависимостей от величины напряжения и степени загрязнения изоляции.

Капиллярный дефектоскоп представляет собой совокупность приборов капиллярного неразрушающего контроля. Капиллярный контроль основан на искусственном повышении световой и цветовой контрастности дефектного участка относительно неповрежденной. Методы капиллярной дефектоскопии позволяют обнаруживать невооруженным глазом тонкие поверхностные трещины и другие несплошности материала, образующиеся при изготовлении и эксплуатации деталей машин. Полости поверхностных трещин заполняют специальными индикаторными веществами (пенетранта), проникающими в них под действием сил капиллярности. Для так называемого люминесцентного метода пенетранты составляют на основе люминофоров (керосин, нориол[2] и др.) На очищенную от избытка пенетранта поверхность наносят тонкий порошок белого проявителя (окись магния, тальк и т. п.), обладает сорбционными свойствами, за счет чего частицы пенетранта извлекаются из полости трещины на поверхность, изображают контуры трещины и ярко светятся в ультрафиолетовых лучах. При так называемом цветном методе контроля пенетранты составляют на основе керосина с добавлением бензола, скипидара и специальных красителей (например, красной краски).

Толщиномер — это измерительный прибор, позволяющий с высокой точностью измерить толщину слоя покрытия металла (такого как краска, лак, грунт, шпаклевка, ржавчина, толщину основной стенки металла, пластмасс, стекла, а также других неметаллических соединений, покрывающих металл). Современные приборы позволяют измерить толщину покрытия без нарушения его целостности.

Применяется в автомобильной, судостроительной промышленности для контроля качества лакокрасочного покрытия транспортных средств, в ремонтных работах, для определения состояния кузова или обшивки по результатам эксплуатации.

В строительстве применяется для определения толщины покрытия металла, имеющего в своем составе противопожарные, антикоррозионные и другие виды компонентов, используемых при создании конструкций зданий.

Толщиномер применяется в работе экспертов-оценщиков, профессиональных полировщиков, контролирующих качество проведения покрасочных работ.

Толщиномеры делятся по принципу их работы, сферы применения, а также способом измерений на:

  • механические
  • электромагнитные
  • ультразвуковые
  • магнитные
  • вихретоковые
  • электромагнитновихретоковые

Течеискатель — прибор предназначен для обнаружения, локализации и количественной оценки величины течи. Работа течеискателей может базироваться на различных физических принципах, ориентированных как на прямые, так и на косвенные измерения параметров. Количественную оценку течи производят, как правило, при использовании тестового газа. Для количественной оценки течи используется отношение произведения величины тестируемого объёма на перепад давления в нём до единицы времени.

Гелиевые масспектрометрические течеискатели[править | править код]

Необходимым условием для использования гелиевых масспектрометрических течеискателей является наличие вакуума в детекторе прибора — в масспектрометр. Согласно течеискатели делят на 2 вида — течеискатели для работы с вакуумированным оборудованием и течеискатели-шнифферы (от англ. Sniffer и нем. Schnüffer — нюхач) с помощью которых фиксируют течи тестового газа с тестируемого объёма в атмосферу. Шнифферы есть дешевле моделями течеискателей и обладают на 4 — 6 порядков более низкой чувствительностью, чем течеискатели на вакууме. Тем не менее большинство течеискателей первого типа комплектуется насадками для защиты входа, которые позволяют им работать в режиме шниффера.

Фреоновые течеискатели используются для поиска протечек на любом оборудовании, но проигрывают 3 — 4 порядка в чувствительности гелиевым масспектрометричним течеискатель. Принцип действия фреоновых течеискателей основан на адсорбции тестового газа на поверхности датчика. В связи с этим при детектировании крупных протечек фреоновые течеискатели могут сорбировать слишком много фреона и потребуются специальные процедуры для релаксации датчика. С другой стороны работа на атмосферном давлении и простота датчика позволяют создавать ручные портативные течеискатели с чувствительностью до 10 — 7 Вт.

  • Алешин Н. П., Щербинский В. Г. Радиационная, ультра-звуковая и магнитная дефектоскопии металлоизделий. — М .: Высш.шк., 1991. — 271 с.
  • Билокур И. П. Дефектология и неразрушающий контроль .- Киев: Вища шк., 1990. — 207с.
  • Адаменко А. А. Современные методы радиационной дефектоскопии. — Киев: Наук. мнение, 1984. — 215 с.
  • Герасимов В. Г., Останин Ю. Я., Покровский А. Д. и др. Неразрушающий контроль качества электромагнитными методами. — М .: Энергия, 2008. 215 с.
  • Билокур И. П., Коваленко В. А. Дефектоскопия материалов и изделий. — Киев: Техника, 1989. — 192 с.

ru.wikipedia.org

Ультразвуковая дефектоскопия — Википедия

Ультразвукова́я дефектоскопи́я — метод, предложенный С. Я. Соколовым в 1928 году и основанный на исследовании процесса распространения ультразвуковых колебаний с частотой 0,5 — 25 МГц в контролируемых изделиях с помощью специального оборудования — ультразвукового преобразователя и дефектоскопа[1]:125. Является одним из самых распространенных методов неразрушающего контроля.

Звуковые волны не изменяют траектории движения в однородном материале. Отражение акустических волн происходит от границы раздела сред с различными удельными акустическими сопротивлениями. Чем больше различаются акустические сопротивления, тем большая часть звуковых волн отражается от границы раздела сред. Так как включения в металле обычно содержат газ (смесь газов) возникающих вследствие процесса сварки, литья и т. п. И не успевают выйти наружу при затвердевании металла, смесь газов имеет на пять порядков меньшее удельное акустическое сопротивление, чем сам металл, то отражение будет практически полное.

Разрешающая способность акустического исследования, то есть способность выявлять мелкие дефекты раздельно друг от друга, определяется длиной звуковой волны, которая в свою очередь зависит от частоты ввода акустических колебаний. Чем больше частота, тем меньше длина волны. Эффект возникает из-за того, что при размере препятствия меньше четверти длины волны, отражение колебаний практически не происходит, а доминирует их дифракция. Поэтому, как правило, частоту ультразвука стремятся повышать. С другой стороны, при повышении частоты колебаний быстро растёт их затухание, что сокращает возможную область контроля. Практическим компромиссом стали частоты в диапазоне от 0,5 до 10 МГц.

Возбуждение и приём ультразвука[править | править код]

Существует несколько методов возбуждения ультразвуковых волн в исследуемом объекте. Наиболее распространенным является использование пьезоэлектрического эффекта. В этом случае излучение ультразвука производится с помощью преобразователя, который преобразует электрические колебания в акустические путём обратного пьезоэлектрического эффекта. Пройдя через контролируемую среду, ультразвуковые колебания попадают на приёмную пьезопластину преобразователя и, вследствие прямого пьезоэлектрического эффекта вновь становятся электрическими, которые и регистрируются измерительными цепями. В зависимости от конструкции и подключения, пьезопластины преобразователя могут выполнять роль только излучателя ультразвуковых колебаний или только приёмника, либо совмещать в себе обе функции.

Ультразвуковые пьезоэлектрические преобразователи, использующиеся при ручном контроле: прямой B1S-O, миниатюрный наклонный MWB 70-4, наклонный WK45-2

Также используются электромагнитно-акустический (ЭМА) метод, основанный на приложении сильных переменных магнитных полей к металлу. КПД этого метода гораздо ниже, чем у пьезоэлектрического, но зато может работать через воздушный зазор и не предъявляет особых требований к качеству поверхности.

Существующие акустические методы неразрушающего контроля подразделяют на две большие группы — активные и пассивные.

Активные[править | править код]

Активные методы контроля подразумевают под собой излучение и приём акустических волн.

Отражения[править | править код]
Эхо-импульсный метод контроля сварного соединения без дефекта (сверху) и с дефектом (снизу). В правой части изображения представлен экран дефектоскопа с изображённым на нём зондирующим импульсом (сверху) и импульсом от дефекта (снизу).
  • Эхо-метод или эхо-импульсный метод — наиболее распространённый: преобразователь генерирует колебания (то есть выступает в роли генератора) и он же принимает отражённые от дефектов эхо-сигналы (приёмник). Данный способ получил широкое распространение за счёт своей простоты, так как для проведения контроля требуется только один преобразователь, следовательно при ручном контроле отсутствует необходимость в специальных приспособлениях для его фиксации (как, например, в дифракционно-временном методе) и совмещении акустических осей при использовании двух преобразователей. Кроме того, это один из немногих методов ультразвуковой дефектоскопии, позволяющий достаточно точно определить координаты дефекта, такие как глубину залегания и положение в исследуемом объекте (относительно преобразователя).
  • Зеркальный или Эхо-зеркальный метод — используются два преобразователя с одной стороны детали: сгенерированные колебания отражаются от дефекта в сторону приёмника. На практике используется для поиска дефектов расположенных перпендикулярно поверхности контроля, например трещин.
  • Дифракционно-временной метод — используется два преобразователя с одной стороны детали, расположенные друг напротив друга. Если дефект имеет острые кромки (как, например, трещины) то колебания дифрагируют на концах дефекта и отражаются во все стороны, в том числе и в сторону приёмника. Дефектоскоп регистрирует время прихода обоих импульсов при их достаточной амплитуде. На экране дефектоскопа одновременно отображаются оба сигнала от верхней и от нижней границ дефекта, тем самым можно достаточно точно определить условную высоту дефекта. Способ достаточно универсален, позволяет производить ультразвуковой контроль на швах любой сложности, но требует специального оборудования для фиксации преобразователей, а также дефектоскоп, способный работать в таком режиме. Кроме того, дифрагированные сигналы достаточно слабые.
  • Дельта-метод — разновидность зеркального метода — отличается механизмом отражения волны от дефекта и способом принятия сигнала. В диагностике используется для поиска специфично расположенных дефектов. Данный метод очень чувствителен к вертикально-ориентированным трещинам, которые не всегда удаётся выявить обычным эхо-методом.
  • Ревербационный метод — основан на постепенном затухании сигнала в объекте контроля. При контроле двухслойной конструкции, в случае качественного соединения слоёв, часть энергии из первого слоя будет уходить во второй, поэтому ревербация будет меньше. В обратном случае будут наблюдаться многократные отражения от первого слоя, так называемый лес. Метод используется для контроля сцепления различных видов наплавок, например баббитовой наплавки с чугунным основанием. Основным недостатком данного метода является регистрация дефектоскопом эхо-сигналов от границы соединения двух слоёв. Причиной этих эхо-сигналов является разница скоростей упругих колебаний в материалах соединения и их различное удельное акустическое сопротивление. Например на границе баббит-сталь возникает постоянный эхо-сигнал даже в местах качественного сцепления. В силу конструкционных особенностей некоторых изделий, контроль качества соединения материалов ревербационным методом может быть невозможен именно из-за наличия на экране дефектоскопа эхо-сигналов от границы соединения.
  • Акустическая микроскопия благодаря повышенной частоте ввода ультразвукового пучка и применению его фокусировки, позволяет обнаруживать дефекты, размеры которых не превышают десятых долей миллиметра. Широкое применение в промышленности затруднено в связи с крайне низкой производительностью метода. Данный метод подходит для исследовательских целей, диагностике, а также радиоэлектронной промышленности.
  • Когерентный метод — по сути является разновидностью Эхо-импульсного метода. Помимо двух основных параметров эхо-сигнала, таких как амплитуда и время прихода, используется дополнительно фаза эхо-сигнала. Использование когерентного метода, а точнее нескольких идентичных преобразователей, работающих синфазно. При использовании специальных преобразователей, таких как преобразователь бегущей волны или его современный аналог — преобразователь с фазированной решёткой. Исследования применимости данного метода к реальным объектам контроля ещё не завершены. Метод находится на стадии научно-исследовательских изысканий.
Прохождения[править | править код]

Методы прохождения подразумевают под собой наблюдение за изменением параметров ультразвуковых колебаний, прошедших через объект контроля, так называемых сквозных колебаний. Изначально для контроля применялось непрерывное излучение, а изменение его амплитуды сквозных колебаний расценивалось как наличие дефекта в контролируемом объекте, так называемой звуковой тени. Отсюда появилось название теневой метод. Со временем непрерывное излучение сменилось импульсным, а к фиксируемым параметрам помимо амплитуды добавились также фаза, спектр и время прихода импульса и появились другие методы прохождения. Термин теневой потерял свой первоначальный смысл и стал означать один из методов прохождения. В англоязычной литературе метод прохождения называется through transmission technique или through transmission method, что полностью соответствует его российскому названию. Термин теневой в англоязычной литературе не применяется.

  • Теневой — используются два преобразователя, которые находятся по две стороны от исследуемой детали на одной акустической оси. В данном случае один из преобразователей генерирует колебания (генератор), а второй принимает их (приёмник). Признаком наличия дефекта будет являться значительное уменьшение амплитуды принятого сигнала, или его пропадание (дефект создаёт акустическую тень).
  • Зеркально-теневой — используется для контроля деталей с двумя параллельными сторонами, развитие теневого метода: анализируются отражения от противоположной грани детали. Признаком дефекта, как и при теневом методе, будет считаться пропадание отраженных колебаний. Основное достоинство этого метода в отличие от теневого заключается в доступе к детали с одной стороны.
Вертикально ориентированная трещина, выявляемая зеркальным методом.
  • Временной теневой основан на запаздывании импульса во времени, затраченного на огибание дефекта. Используется для контроля бетона или огнеупорного кирпича.
  • Метод многократной тени аналогичен теневому, с тем исключением, что ультразвуковая волна несколько раз проходит через параллельные поверхности изделия.
  • При эхо-сквозном методе используют два преобразователя, расположенные по разные стороны объекта контроля друг напротив друга. В случае отсутствия дефекта, на экране дефектоскопа наблюдают сквозной сигнал и сигнал, двукратно отражённый от стенок объекта контроля. При наличии полупрозрачного дефекта, также наблюдают отражённые сквозные сигналы от дефекта.
Эхо-сквозной метод контроля. При отсутствии дефекта на экране дефектоскопа наблюдаются только 1 и 2 импульсы. При наличии полупрозрачного дефекта, дополнительно 3 и 4-й. На рисунке для наглядности отражения ультразвуковых волн, неверно показаны направления их распространения. Ультразвуковые волны распространяются вдоль акустической оси передатчика (верхнего преобразователя).
  • Ревербационно-сквозной метод включает в себя элементы ревербационного метода и метода многократной тени. На небольшом расстоянии друг от друга, как правило, с одной стороны изделия, устанавливают два преобразователя — передатчик и приёмник. Ультразвуковые волны, посылаемые в объект контроля после многократных отражений, в конечном счете попадают на приёмник. Отсутствие дефекта позволяет наблюдать стабильные отраженные сигналы. При наличии дефекта изменяется распространение ультразвуковых волн — изменяется амплитуда и спектр принятых импульсов. Метод применяется для контроля многослойных конструкций и полимерных композитных материалов.
  • Велосиметрический метод основан на регистрации изменения скорости упругих волн в зоне дефекта. Применяется для контроля многослойных конструкций и для изделий из полимерных композиционных материалов.
Собственных колебаний[править | править код]

Основаны на возбуждении в объекте контроля свободных или вынужденных колебаний и измерению их параметров: собственных частот и величины потерь.

Вынужденных колебаний[править | править код]
  • Интегральный
  • Локальный
  • Акустико-топографический
Свободных колебаний[править | править код]

Свободные колебания возбуждают путём кратковременного воздействия на объект контроля, после чего объект колеблется в отсутствии внешних воздействий. Источником кратковременного воздействия может быть любой механический удар, например молотком.

  • Интегральный
  • Локальный
Импедансные[править | править код]
  • Изгибных волн
  • Продольных волн
  • Контактного импеданса

Пассивные[править | править код]

Пассивные методы контроля заключаются в приёме волн, источником которых является сам объект контроля.

Современные дефектоскопы точно замеряют время, прошедшее от момента излучения до приёма эхо-сигнала, тем самым измеряя расстояние до отражателя. Это позволяет добиться высокого лучевого разрешения исследования. Компьютеризированные системы позволяют провести анализ большого числа импульсов и получить трёхмерную визуализацию отражателей в металле.

Ультразвуковой контроль изделий в ГДР, 1977 год

Ультразвуковой контроль не разрушает и не повреждает исследуемый образец, что является его главным преимуществом. Возможно проводить контроль изделий из разнообразных материалов, как металлов, так и неметаллов. Кроме того можно выделить высокую скорость исследования при низкой стоимости и опасности для человека (по сравнению с рентгеновской дефектоскопией) и высокую мобильность ультразвукового дефектоскопа.

Использование пьезоэлектрических преобразователей требует подготовки поверхности для ввода ультразвука в металл, в частности создания шероховатости поверхности не ниже класса 5, в случае со сварными соединениям ещё и направления шероховатости (перпендикулярно шву). Ввиду большого акустического сопротивления воздуха, малейший воздушный зазор может стать непреодолимой преградой для ультразвуковых колебаний. Для устранения воздушного зазора, на контролируемый участок изделия предварительно наносят контактные жидкости, такие как вода, масло, глицерин. При контроле вертикальных или сильно наклоненных поверхностей необходимо применять густые контактные жидкости с целью предотвращения их быстрого стекания.

Для контроля изделий с внешним диаметром менее 200 мм, необходимо использовать преобразователи, с радиусом кривизны подошвы R, равным 0,9-1,1R радиуса контролируемого объекта, так называемые притертые преобразователи, которые в таком виде непригодны для контроля изделий с плоскими поверхностями. Например для контроля цилиндрической поковки, необходимо производить перемещение преобразователя в двух взаимно перпендикулярных направлениях, что подразумевает под собой использование двух притёртых преобразователей — по одному для каждого из направлений.

Как правило ультразвуковая дефектоскопия не может дать ответ на вопрос о реальных размерах дефекта, лишь о его отражательной способности в направлении приемника. Эти величины коррелируют, но не для всех типов дефектов. Кроме того, некоторые дефекты практически невозможно выявить ультразвуковым методом в силу их характера, формы или расположения в объекте контроля.

Практически невозможно производить достоверный ультразвуковой контроль металлов с крупнозернистой структурой, таких как чугун или аустенитный сварной шов (толщиной свыше 60 мм)[2][3] из-за большого рассеяния и сильного затухания ультразвука. Кроме того, затруднителен контроль малых деталей или деталей со сложной формой. Также затруднен ультразвуковой контроль сварных соединений из разнородных сталей (например аустенитных сталей с перлитными сталями) ввиду крайней неоднородности металла сварного шва и основного металла.

Ультразвуковой дефектоскоп для контроля железнодорожных рельс

Применяется для поиска дефектов материала (поры, волосовины, различные включения, неоднородная структура и пр.) и контроля качества проведения работ — сварка, пайка, склейка и пр. Ультразвуковой контроль является обязательной процедурой при изготовлении и эксплуатации многих ответственных изделий, таких как части авиационных двигателей, трубопроводы атомных реакторов или железнодорожные рельсы.

Ультразвуковой контроль сварных швов[править | править код]

Сварные швы являются самой массовой областью применения ультразвуковой дефектоскопии. Это достигается за счёт мобильности ультразвуковой установки, высокой производительности контроля, точности, чувствительности к внутренним (объёмным — поры, металлические и неметаллические включения; плоскостным — непровары, трещины), а также внешним, то есть поверхностным дефектам сварных швов.

Многие ведомственные документы подразумевают обязательный ультразвуковой контроль сварных швов, либо альтернативный выбор ультразвукового или радиационного контроля, либо контроль обоими методами.

Основным документом в России по ультразвуковому контролю сварных швов является ГОСТ Р 55724-2013, в котором рассмотрены в полном объёме методы контроля стыковых, тавровых, нахлесточных и угловых сварных соединений, выполненных различными способами сварки. Также в нём подробно описаны калибровочные образцы (меры) СО-2 (СО-2А) и СО-3 и настроечные образцы, необходимые для настройки дефектоскопа, а также их параметры для их изготовления.

Объёмы контроля и нормы оценки качества сварного соединения устанавливаются различными нормативными документами в соответствии с требованиями прочности к конкретной сварной конструкции. На предприятиях, изготавливающих особо ответственные изделия, а также различными надзорными органами могут выпускаться собственные методические материалы для оценки качества сварных швов[4]. Примером может служить РД РОСЭК-001-96, разработанный Российской экспертной компанией по объектам повышенной опасности «РосЭК», и утвержденный Ростехнадзором для оценки качества сварных соединений для грузоподъёмных машин.

Нормативно-техническая документация[править | править код]

  • ГОСТ Р 55724-2013 Контроль неразрушающий. Соединения сварные. Методы ультразвуковые.
  • ГОСТ 24507-80 Контроль неразрушающий. Поковки из черных и цветных металлов. Методы ультразвуковой дефектоскопии.
  • ГОСТ 22727-88 Прокат листовой. Методы ультразвукового контроля.
  • ГОСТ 21120-75 Прутки и заготовки круглого и прямоугольного сечения. Методы ультразвуковой дефектоскопии.
  • РД РОСЭК-001-96 Машины грузоподъемные. Конструкции металлические. Контроль ультразвуковой. Основные положения.
  • ОП 501 ЦД-97 Энергетическое оборудование. Сосуды давления. Трубопроводы пара, воды.
  • ПНАЭ Г-7-010-89 Оборудование и трубопроводы атомных энергетических установок. Сварные соединения и наплавки. Правила контроля.
  • ПНАЭ Г-10-032-92 Правила контроля сварных соединений элементов локализующих систем безопасности атомных станций.
  • ПНАЭ Г-7-032-91 Унифицированные методики контроля основных материалов полуфабрикатов), сварных соединений и наплавки оборудования и трубопроводов атомных энергетических установок. Ультразвуковой контроль. Часть IV. Контроль сварных соединений из сталей аустенитного класса.
  1. В. Н. Волченко, А. К. Гурвич, А. Н. Майоров, Л. А. Кашуба, Э. Л. Макаров, М. Х. Хусанов. Контроль качества сварки / Под ред. В. Н. Волченко. — Учебное пособие для машиностроительных вузов. — М.: Машиностроение, 1975. — 328 с. — 40 000 экз.
  2. ↑ ПНАЭ Г-7-032-91 Ультразвуковой контроль. Часть IV. Контроль сварных соединений из сталей аустенитного класса. П.1.4.
  3. Клюев В. В. Неразрушающий контроль. Том 3.: Справочник. В 7-и книгах / Под ред. Клюева В. В. — М.: Машиностроение, 2004.
  4. ↑ Некоторые «болезненные» вопросы УЗК традиционными методами // В мире неразрушающего контроля", 2013 — № 2(60)
  • Шрайбер Д. С. Ультразвуковая дефектоскопия //М.: Металлургия. — 1965. — Т. 392. — С. 29.
  • Гурвич А. К., Ермолов И. Н. Ультразвуковая дефектоскопия сварных швов — Киев: Техника, 1972, 460 с.
  • Выборнов Б. И. Ультразвуковая дефектоскопия — М.: Металлургия, 1985.
  • Щербинский В. Г., Паврос С. К., Гурвич А. К. Ультразвуковая дефектоскопия: вчера, сегодня, завтра //В мире неразрушающего контроля. — 2002. — №. 4. — С. 18.
  • Ермолов И. Н. Достижения в теоретических вопросах ультразвуковой дефектоскопии, задачи и перспективы //Дефектоскопия. — 2004. — №. 10. — С. 13-48.
  • Кретов Е. Ф. Ультразвуковая дефектоскопия в энергомашиностроении. — Изд.3-е, перераб.и доп. -Санкт-Петербург: СВЕН, 2011, 312с., ISBN 978-5-91161-014-2
  • Марков А. А., Шпагин Д. А. Ультразвуковая дефектоскопия рельсов, — Изд. 2-е, исправл. и доп. — СПб.: Образование — Культура, 2013, 283с., ISBN 5-88857-104-0

ru.wikipedia.org

Обзор методов дефектоскопии при обследовании трубопроводов

 

В статье рассмотрены современные методы неразрушающего контроля при обследовании участков трубопроводов и соединительных деталей, находящихся в эксплуатации. Описаны области применения приборов, которые используются для контроля, их принципы работы. Анализируются их достоинства и ограничения области применения. Определены оптимальные методы выявления дефектов, намечены критерии улучшения работы приборов.

Ключевые слова: контроль труб, дефектоскопы, обследование труб, неразрушающий контроль, наружные сканеры.

 

В условиях эксплуатации на протяжении длительного времени трубопроводы подвергаются различным внешним и внутренним воздействиям, в результате чего происходит деградация материала, коррозионные повреждения, возникают и развиваются трещины усталости на поверхностях труб и другие виды дефектов. Несмотря на то, что проектирование трубопроводов по современным кодам и технология изготовления и монтажа должны обеспечить реализацию назначенного ресурса, исключить возможность возникновения таких дефектов не удается. Чтобы избежать серьезных последствий подрастания дефектов, проводят различные обследования, применяя методы неразрушающего контроля. Неразрушающий контроль — контроль надежности основных рабочих свойств и параметров объекта, не требующий выведения объекта из эксплуатации, либо его демонтажа [1].

Современные методы и средства неразрушающего контроля [17], используемые для диагностики трубопроводов, получили широкое развитие и распространение. Наибольшее применение получили такие методы, как магнитные (магнитной анизотропии, магнитной памяти металла, магнитной проницаемости), акустические (импульсные ультразвуковые, волн Лэмба, фазовые, акустической эмиссии), электрические и оптические (визуальные — эндоскопические, лазерные, голографические). Такие методы применяются для выявления различных дефектов: нарушения герметичности, контроля напряженного состояния, контроля качества и состояния сварных соединений, контроля протечек и других параметров, ответственных за эксплуатационную надежность трубопроводов. При этом программы, методы и средства контроля трубопроводов различного назначения (теплопроводов, газопроводов, нефтепроводов, продуктопроводов, водопроводов) незначительно отличается друг от друга [5].

Актуальность данной темы объясняется тем, что в наше время имеется значительное число трубопроводов в эксплуатации и процессе производства; повреждения и разрушение компонентов которых может приводить к серьезным экономическим потерям и пагубным воздействиям на природу [19]. Существенно, что трубопроводы включают много соединительных деталей, как металлических, так и неметаллических, имеющих сложные геометрические формы (узлы), доступ к некоторым частям которых может быть ограничен. В таких случаях методы и технические средства неразрушающего контроля являются оптимальным и максимально удобным решением для проведения обследования определенных районов трубопроводов, без выведения объекта из эксплуатации, а также обследования труднодоступных участков для выявления дефектов.

Дефектоскопия как средство выявления признаков деградации материала трубопроводов и предупреждения аварийных ситуаций [18] естественно находится в поле внимания инженерного и научного сообщества. Постоянно развиваются методы определения размеров, ориентации дефектов, совершенствуется оборудование, проводятся исследования и испытания на выявление характеристик моделей дефектоскопов, а также проводится анализа для последующего улучшения работы средств дефектоскопии.

Вопросам дефектоскопии материалов и конструкций уделяется все большее внимание как у нас в стране, так и за рубежом, о чем свидетельствует непрерывный рост числа учебных центров, задачей которых является подготовка и квалификация специалистов для работы в области разработки методов дефектоскопии и их применения [5].

В связи с актуальностью темы неразрушающего контроля растет число публикаций, в которых исследуются взаимодействия дефектоскопов с трубопроводами. Результат диагностики подобных исследований трубопроводов показал, что нормативная база и приборная часть требуют дальнейшего совершенствования с учетом особенностей системы трубопроводов [2, 3].

Необходимость поддержания трубопроводов в хорошем состоянии заставляет искать новые эффективные методы контроля труб с целью выявления дефектов и трещин, а также коррозии на их поверхности. Появление современных автоматизированных роботов в разных сферах промышленности привело к разработке робота в области дефектоскопии, который позволит уменьшить время диагностирования различных типов трубопроводов, а также сократить затраты на контроль состояния трубопроводов [4].

История самого старого метода контроля показывает наглядный переход от сложного процесса реализации контроля, зависящего от человеческого фактора, к автоматизированным и экологически чистым методам в настоящее время [6].

В настоящее время обследования методами неразрушающего контроля следует производить в соответствии с [13–15], что позволит существенно повысить показатель надежности при эксплуатации [9].

Зарубежные источники, в частности [20–22], рассматривают возможности применения методов неразрушающего контроля для повышения уровня точности результатов.

Особенности критериев по выбору дефектоскопа

Принципы работы дефектоскопов различны, но при этом существует ряд параметров, по которым можно объективно дать оценку оборудованию по проведению диагностики методом неразрушающего контроля [10].

При выборе дефектоскопа следует учитывать:

  1.                Разрешение дефектоскопа. Точность определения размеров(расположения) дефекта.
  2.                Скорость диагностики. Как правило, чем быстрее идёт диагностика, тем ниже точность определения дефекта.
  3.                Способ крепления прибора.
  4.                Уровень защиты прибора от внешних воздействий. К внешним воздействиям можно отнести влагу, давление, осадки и др.
  5.                Температурный режим. Проводя сканирование при критических температурах, прибор может показывать не точные измерения или выйти из строя.

&nbspАнализ методов дефектоскопии трубопроводов

Сканеры дефектоскопы [23] используют для обследования трубопроводов. Дефектоскоп- прибор для нахождения дефектов в объектах из различных металлических и неметаллических материалов методом неразрушающего контроля. К дефектам относятся появление коррозии, развитие трещин, нарушение целостности структуры и др.

В данном обзоре рассмотрим следующие дефектоскопы:

        Вихретоковые

        Ультразвуковые

        Магнитно-порошковые

        Капиллярные

Вихретоковые дефектоскопы.

В основе метода вихретоковой дефектоскопии лежит измерение вихревых токов, возникающих возле подповерхностных дефектов в магнитном поле. При возникновении таких токов на исследуемом участке фиксируются показания электромагнитного поля вихревых токов, образующихся при нахождении дефекта. В результате обработки параметров, имеющих отклонения, можно получить информацию о внутренних дефектах (рисунок 1) [8].

Рис. 1. Принцип работы вихретокового дефектоскопа

 

Достоинства:

          Метод позволяет быстро провести диагностику

          Результаты контроля с минимальной погрешностью

          Сравнительно невысокая стоимость

          Высокая чувствительность

Недостатки:

          Глубина исследования до 2мм

          Контроль может осуществляться на определённых материалах объекта

          Надежность оборудования среднее

Ультразвуковой дефектоскоп

В ультразвуковых дефектоскопах используются эхо-метод и теневой методы контроля. Эхо-метод основан на подаче импульсов и измерении эхо-сигналов (рисунок 2). Принцип действия заключается в отправке ультразвукового сигнала в виде импульса от дефектоскопа к объекту исследования, при этом фиксируется интервал времени прихода эхосигналов, отраженных от дефектов. Метод позволяет обнаруживать поверхностные и глубинные дефекты с различной ориентировкой [7].

Рис. 2. Обнаружение скрытого дефекта с помощью ультразвукового дефектоскопа (эхо-метод)

 

Рис. 3. Обнаружение скрытого дефекта с помощью ультразвукового дефектоскопа

 

При теневом методе используют отражатели, установленные напротив друг друга (источник (А) и приемник (В)). Если известно расстояние от А до В и измерено время прохождения волн от А к В, то в результате расчетов можно получить распределение скорости распространения волны на определенном участке объекта исследования(рисунок 3). Таким образом можно обследовать участки на наличие дефектов [12].

Достоинства:

          Контроль может осуществляться практически из любых материалов

          Широкая распространённость метода

Недостатки:

          Высокие требования к состоянию поверхности исследуемого тела (тип, габариты, форма)

          Стоимость сравнительно высокая

          Время контроля от среднего до длительного

          Надежность оборудования среднее

Магнитно-порошковая дефектоскопия

Метод основан на выявлении рассеяния магнитного поля над дефектами (рисунок 4). Этот метод является самым наглядным, т. к. принцип обследования заключается в нанесении магнитного порошка на исследуемый участок, в результате чего при действии магнитного поля частицы намагничиваются и соединяются. Визуально можно наблюдать скопления порошка в зонах трещин. Данный метод позволяет контролировать различные по форме детали, сварные швы, внутренние поверхности отверстий [11].

Рис. 4. Магнитно-порошковый дефектоскоп: 1 – выключатель, 2 – сердечник, 3 – клеммовый щиток, 4 – корпус, 5 – трехжильный кабель, 6, 7 – намагничивающая и дополнительная катушки

 

Достоинства:

          Эффективное и быстрое нахождение поверхностных дефектов

          Визуально наглядные результаты

          Низкая стоимость

          Высокая надежность оборудования

Недостатки:

          Трудности, возникающие при размагничивании больших деталей

          Недоступность контроля в стыках или узлах, не прибегая к разборке

          Невозможность контроля деталей из пластмассы, цветных металлов и некоторых видов сталей.

          Ограниченная глубина

Капиллярный дефектоскоп

Метод капиллярной дефектоскопии [24] позволяет обнаруживать невооружённым глазом тонкие поверхностные трещины и несплошности материала. Полости поверхностных трещин заполняют специальными индикаторными веществами (пенетрантами), проникающими в них под действием сил капиллярности. На очищенную от избытка пенетранта поверхность наносят тонкий порошок белого проявителя (окись магния, тальк и т. п.), обладающего сорбционными свойствами, за счёт чего частицы пенетранта извлекаются из полости трещины на поверхность, обрисовывают контуры трещины и ярко светятся в ультрафиолетовых лучах.

Достоинства:

          Высокая надежность оборудования

          Время контроля среднее

Недостатки:

          Нахождение исключительно дефектов, выходящих на поверхность

&nbspРезультаты обзора

Резюмируя достоинства, недостатки и принципы действия различных методов [16], можно сделать следующие выводы:

          Эффективность выявления коррозионных повреждений (наружных и внутренних) с помощью ультразвуковых дефектоскопов может быть повышена в результате дополнительной обработки результатов дефектоскопии.

          Для обследования трубопроводов оптимальными по своим характеристикам и широкому распространению являются ультразвуковые и вихретоковые дефектоскопы.

          С внедрением новых моделей дефектоскопов производительность увеличивается, но требуются квалифицированные и подготовленные специалисты для работы с более современной техникой.

          Требования в нормативных документов к капиллярному контролю принципиальных различий не имеет, важна чувствительность.

          Особое внимание стоит уделять материалу исследуемой поверхности, т. к. от этого зависит точность диагностики и минимальная погрешность.

          Адаптация средств вихретокового контроля к электромагнитным свойствам поверхности может значительно увеличить достоверность контроля и уменьшить присутствие человеческого фактора.

&nbspЗаключение

В результате проведенного обзора видно, что необходимо проводить дальнейшие исследования для усовершенствования оборудования. Также новые разработки могут существенно повысить надежность диагностики и выявлять проблему контроля состояния труб в отрасли международного уровня.

Своевременное и достоверное определение размеров и конфигурации дефектов исключительно важно для оценок остаточного ресурса компонентов трубопроводов, для планирования и выбора технологии восстановления поврежденных участков, для назначения сроков проведения инспекций.

 

Литература:

 

  1.      Афанасьев В. Б., Чернова Н. В. Современные методы неразрушающего контроля // Успехи современного естествознания. — 2011. — № 7 — С. 73–74
  2.      Шмаков В. А., Смирнов Ю. Н., Гиззатуллин Р. Р. Планирование ремонта магистральных трубопроводов по результатам внутритрубной диагностики // Роль науки в развитии топливно-энергетического комплекса. Матер. научн.-практ. конф. 24 октября 2007 г. − Уфа, 2007. — С. 90–92.
  3.      Зубаилов Г. И., Гумеров К. М., Гиззатуллин Р. Р. Ударная вязкость металла и прочность трубопровода // Проблемы и методы обеспечения надежности и безопасности систем транспорта. Матер. научн.-практ. конф. 22 мая 2007 г. — Уфа, 2007. — С. 169–171.
  4.      Поезжаева Е. В. Разработка робота для контроля трубопроводов / Е. В. Поезжаева, А. Г. Федотов, П. В. Заглядов // Молодой ученый. — 2015. — № 16. — С. 218–222.
  5.      Потапов, И. А. Акустические методы и средства неразрушающего контроля и дистанционной диагностики трубопроводов [Текст]: автореф. дис. канд. техн. наук 05.02.11/ Потапов Иван Анатольевич. — Санкт-Петербург, 2007. — С. 26–30.
  6.      Сайфутдинов С. М. Капиллярный контроль: история и современное состояние. М., 2008.
  7.      Жумаев К. К. Выявление внутренних и наружных дефектов трубопроводов ультразвуковыми дефектоскопами [Текст] / К. К. Жумаев, Н. О. Каландаров // Молодой ученый. — 2014. — № 16. — С. 67–68.
  8.      Зацепин Н. Н. Исследование магнитного поля вихревых токов над поверхностными дефектами. Дефектоскопия, 1969, № 4, с. 104–112.
  9.      Р Газпром 2–2.3–620–2011. Методика расчета показателей надежности при эксплуатации объектов линейной части. М., 2011.
  10. Чистяков В. В., Молотков С. Л. Сравнительный анализ технических возможностей ультразвуковых дефектоскопов общего назначения. В мире неразрушающего контроля. 2002 № 2 с. 40–44.
  11. Григорьев П. А., Фридман JI.A., Халилеев П. А. Намагничивающая система дефектоскопа для контроля труб подземных магистральных трубопроводов.- Дефектоскопия. 1976, № 4, с.7–17.
  12. Гурвич А. К., Ермолов И. Н. Ультразвуковой контроль сварных швов.-Киев: Техшка,-1972.
  13. СНиП III-18–75. Металлические конструкции. М., 1976.
  14. ГОСТ 23118- 99. Конструкции стальные строительные. Общие технические условия. М., 2001.
  15. Пособие по методам контроля качества сварных соединений металлических конструкций и трубопроводов, выполняемых в строительстве (к СНиП III-18–75)/ ЦНИИПроектстальконструкция им. Мельникова. –М.: Стройиздат, 1988.
  16. ГОСТ 18353–79. Контроль неразрушающий. Классификация видов и методов. М., 2004.
  17. Клюев В. В. Неразрушающий контроль и диагностика. Справочник. -2003.- С. 10–15.
  18. Щербинский В. Г. Методы дефектоскопии сварных соединений. -1987.- С. 57–64
  19. Дмитриева В.Д, Мишукова Б. Г. Эксплуатация систем водоснабжения, канализации и газоснабжения. -1988. — С. 124
  20. Kline R. A., Hsiao C. P., Fidaali M. A. Nondestructive evolution of adhesively bonded joints//Trans.ASME: J.Eng. Mater and Technol. 1986. — 108. — N 3. s. 214–217.
  21. Pollock A. A. Nondestructive Testing. 1969, — 9. — s. 178.
  22. Defect Detection in Stainless Stel Uranus 45 FiG-Welded Joints // Materials Evaluation. 1987, -45, N 3, s. 348–352.
  23. Васильев Н. Н., Исаакян Н. О., Смолянский В. А. Дефектоскоп // Технический Железнодорожный словарь. М., Государственное транспортное железнодорожное издательство.1951.
  24. Филинов М. В. Капиллярный контроль. –М.: Машиностроение. -2004. С. 736.

moluch.ru


Смотрите также

faq-ru.ru

  Карта сайта, XML.